
 

 

 

 

 

  

    

   

   

  

  

  

 

 

   

 

  

 

 

  

  

 

  

  

 

 

   

  

   

 

  

 

 

 

  

  

 

 

BICYCLE SAFETY ANALYSIS: 
CROWDSOURCING BICYCLE TRAVEL DATA TO ESTIMATE RISK EXPOSURE 

AND CREATE SAFETY PERFORMANCE FUNCTIONS 

(Final Draft) 

by 

Haizhong Wang, Ph.D., Assistant Professor  

Chen Chen, Graduate Research Assistant 

School of Civil and Construction Engineering 

Oregon State University, Corvallis, OR 97331 

Yinhai Wang, Ph.D., Professor and Director 

Ziyuan, Pu, Graduate Research Assistant 

Civil and Environmental Engineering, University of Washington 

Michael B. Lowry, Ph.D., P.E. Associate Professor 

Department of Civil Engineering, University of Idaho 

Sponsorship 

Pacific Northwest Transportation Consortium 

for 

Pacific Northwest Transportation Consortium (PacTrans) 

USDOT University Transportation Center for Federal Region 10 

University of Washington 

More Hall 112, Box 352700  

Seattle, WA 98195-2700 

In cooperation with US Department of Transportation-Research and Innovative Technology 

Administration (RITA) 



 

   

 

 

 

 

 

 

 

 

Disclaimer 

The contents of this report reflect the views of the authors, who are responsible for the 

facts and the accuracy of the information presented herein. This document is disseminated 

under the sponsorship of the U.S. Department of Transportation’s University 

Transportation Centers Program, in the interest of information exchange. The Pacific 

Northwest Transportation Consortium, the U.S. Government and matching sponsor 

assume no liability for the contents or use thereof. 

ii 



 

   

  

    

  

   

  

     

  

   

      
     

  

   

  

   

  

   

          

     

  

     

   

   

       

       

     

  

    

  

      

    

   

     

     

   

    

  

   

     

   

   

  

 

    

  

  

   

  

   

   

 

    

  

  

       

         

    

  
   

   
       

        

                                                                                 

Technical Report Documentation Page 

1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. 

4. Title and Subtitle 

Bicycle Safety Analysis: Crowdsourcing Bicycle Travel Data to 

Estimate Risk Exposure and Create Safety Performance Functions 

5. Report Date 

6. Performing Organization Code 

7. Author(s) 

Haizhong Wang, Yinhai Wang, Michael B. Lowry, Ziyuan Pu, Chen Chen 

8. Performing Organization Report No. 

9. Performing Organization Name and Address 

PacTrans 

Pacific Northwest Transportation Consortium 

University Transportation Center for Region 10 

University of Washington More Hall 112 Seattle, WA 98195-2700 

10. Work Unit No. (TRAIS) 

11. Contract or Grant No. 

DTRT-13-G-UTC40 

12. Sponsoring Organization Name and Address 

United States of America 

Department of Transportation 

Research and Innovative Technology Administration 

13. Type of Report and Period Covered 

Research 1/15/2015-12/15/2016 

14. Sponsoring Agency Code 

15. Supplementary Notes 

Report uploaded at www.pacTrans.org 

16. Abstract 

Around 700 bicycle fatalities happen every year, and the number has steadily increased since 2009. At the same 

time Seattle, Wash., and Portland, Ore., are promoting cycling as a healthy transportation mode, so bicycle 

safety has become a more urgent concern for the Pacific Northwest area. The Highway Safety Manual provides 

an evidence-based approach – safety performance function (SPFs) to evaluate safety for common traffic, but 

not, however, for bicycles. Therefore, a data-driven and evidence-based bicycle safety evaluation method is 

needed specifically for the Pacific Northwest region. Based on the first bicycle SPFs created by Krista 

Nordback in 2013, we used STRAVA bicycle count data (a type of crowdsourced bicycle travel data), other 

traffic count data, and bicycle crash data to establish Pacific Northwest SPFs in terms of bike count and crash 

frequency for road intersections. The SPFs demonstrated the relationship between crash frequency and traffic 

and bike volumes. The intersections with higher traffic volumes had higher bicycle crash frequencies. In 

addition, this project improved the usability of a GIS tool that had been created during a previous PacTrans 

project to estimate bicycle exposure. States DOTs and other agencies can use the SPFs to screen and identify 

previous bicycle black spots in the Pacific Northwest region in order to optimize safety investments. 

17. Key Words 

Bicycle safety, SPFs, Crowdsourcing data, GIS, STRAVA 

18. Distribution Statement 

No restrictions. 

19. Security Classification (of this 

report) 

Unclassified. 

20. Security Classification (of 

this page) 

Unclassified. 

21. No. of Pages 22. Price 

NA 

Reproduction of completed page authorized 

iii 



 

  

iv 



  

 

  

    

    

    

  

     

     

   

   

   

      

    

   

  

    

    

   

    

    

    

  

    

    

   

    

   

   

   

    

   

   

Contents 

CHAPTER 1 INTRODUCTION 1 

1.1 Problem Statement 1 

1.2 Background 2 

1.3 Project Objectives, Approach/Method, and Report Organization 5 

CHAPTER 2 LITERATURE REVIEW 7 

2.1 Crowdsourcing Literature 7 

2.2 Bicycle Crash Literature 9 

2.2.1 Crash Types 9 

2.2.2 Crash Injury Severity 10 

2.2.3 Data Collection 11 

2.3 SPF Literature 12 

2.4 STRAVA Data Literature 16 

CHAPTER 3 ENHANCEMENT OF GIS TOOL FOR ESTIMATING BICYCLIST 

EXPOSURE 18 

3.1 Introduction 19 

3.2 Background 20 

3.3 Improvement One: Seamless Tool Process 20 

3.4 Improvement Two: Calculating Bicycling Stress 22 

3.5 Improvement Three: Program Optimization 27 

3.6 Conclusion 29 

CHAPTER 4 DATA COLLECTION AND ANALYSES 30 

4.1 Data Collection for Portland 30 

4.1.1 Collect Annual Average Daily Traffic (AADT) 30 

4.1.2 Identify Segments 32 

4.1.3 Identify Intersections 32 

4.1.4 Convert ADT to AADT 33 

4.1.5 Obtain STRAVA Bicycle Counts 33 

4.1.6 Obtain Crash Data 35 

4.2 Data Collection for Seattle. 35 

4.2.1 Intersection Bicycle Crashes 36 

4.2.2 AADT 36 

v 



  

   

    

   

   

   

    

   

   

  

      

    

   

   

   

    

   

   

  

     

   

   

   

     

   

   

   

   

  

    

     

    

    

     

  

4.2.3 AADB 38 

4.3 Data Description and Analysis for Portland Data 40 

4.3.1 Crash Data 40 

4.3.2 AADT Data 47 

4.3.3 Bicycle Count Data 51 

4.4 Data Description and Analysis for Seattle 53 

4.4.1 Bicycle Crash Data 54 

4.4.2 AADT and AADB 59 

CHAPTER 5 METHODOLOGY 63 

5.1 Procedure for Building the SPF Using Crowdsourced Data 63 

5.2 Statistic Regression 66 

5.2.1 Negative Binomial Regression Model 67 

5.2.2 Poisson Model 68 

5.2.3 Zero-Inflated Negative Binomial Model 69 

5.3 Measures of Goodness of Fit 70 

5.3.1 Likelihood Ratio Test 70 

5.3.2 Vuong Non-Nested Hypothesis Test 70 

CHAPTER 6 RESULTS AND DISCUSSION 72 

6.1 Results and Analyses for Portland 72 

6.1.1 Poisson Regression Model 72 

6.1.2 Negative Binomial Regression Model 73 

6.1.3 Comparison of NBRM and PRM 75 

6.2 Results and Analyses for Seattle 76 

6.2.1 Poisson Model 76 

6.2.2 Negative Binomial Model 77 

6.2.3 Zero-Inflated Negative Binomial Model 78 

6.2.4 Measures of Goodness of Fit 80 

CHAPTER 7 CONCLUSION AND RECOMMENDATION 81 

7.1 Enhancement of GIS Tools 81 

7.2 Establishing an SPF by Using Crowdsourced Data 81 

7.3 Data Collection for Building an SPF 81 

7.4 Modeling for SPF 82 

7.5 Limitations and Future Work 82 

ACKNOWLEDGMENTS 83 

vi 



  

  

 

  

84 REFERENCES 

vii 



  

 

     

     

     

    

   

    

   

    

   

    

      

   

    

   

     

     

     

   

   

    

    

    

    

    

    

    

      

     

Figures 

Figure 1-1 National bicycle fatalities in traffic crashes, 2009-2012 (Source: USDOT, 2014) 1 

Figure 1-2 Estimated bicycle volumes for Bellingham, Wash. ............................................ 2 

Figure 2-1 Decision tree for crowdsourcing method selection (Source: Brabham, 2013) ...8 

Figure 3-1 Original toolbox (the new tool is just one script) ................................................ 19 

Figure 3-2 Improvements in computer execution time (hours) for Seattle ........................... 20 

Figure 3-3 Individual tools in original toolbox ..................................................................... 22 

Figure 3-4 Augmented links at an intersection for turn/crossing movements ...................... 22 

Figure 3-5 Basic stress parameters for a street segment ....................................................... 23 

Figure 3-6 Advanced bicycle stress parameters .................................................................... 24 

Figure 3-7 Roadway bicycle stress ....................................................................................... 24 

Figure 3-8 Unacceptable bicycle stress parameters .............................................................. 25 

Figure 3-9 Stress reduction from bicycle accommodations .................................................. 25 

Figure 3-10 Bicycle stress with a protected bike lane .......................................................... 26 

Figure 3-11 Basic stress parameters for an intersection ....................................................... 26 

Figure 3-12 Intersection section with a median refuge ......................................................... 27 

Figure 3-13 Acceptable stress levels for street segment with a bike lane ............................ 27 

Figure 3-14 Acceptable stress levels for an intersection with a median refuge .................... 28 

Figure 3-15 Improvements in computer execution time (hours) for Seattle ......................... 28 

Figure 3-16 Improvements in computer execution time (minutes) for Moscow .................. 29 

Figure 4-1 non-state ATR locations in Portland, Oregon. .................................................... 31 

Figure 4-2 a cluster of ATRs allocating closed to each other. .............................................. 32 

Figure 4-3 the segment chosen as a sample site based on ATR location. ............................ 33 

Figure 4-4 the traffic count data available site in PBOT, the city of Portland. .................... 34 

Figure 4-5 STRAVA count map (STRAVA, 2016b). .......................................................... 35 

Figure 4-6 multiple bike links on same segment in Portland downtown area (Monsere 

et al., 2016). .......................................................................................................................... 36 

Figure 4-7 2014 Bicycle crash spatial distribution in Seattle (Source: SDOT, 2015) .......... 37 

Figure 4-8 Traffic count locations (Source: SDOT, 2014) ................................................... 38 

viii 



  

      

      

     

     

   

     

     

    

    

   

    

    

   

   

    

    

   

    

    

        

       

     

      

       

     

      

       

      

      

Figure 4-9 2014 Average annual daily traffic in Seattle (Source: SDOT, 2015) ................. 39 

Figure 4-10 Automated permanent bicycle counting locations (Source: SDOT, 2014) .......40 

Figure 4-11 2014 Calculated average daily bicycle volumes in Seattle (Source: SDOT, 

2015) ..................................................................................................................................... 40 

Figure 4-12, Intersection sample with crash count from 2009 to 2014. ............................... 41 

Figure 4-13 Crash frequency for each intersection sample. ................................................. 42 

Figure 4-14, Crash count by year. ......................................................................................... 43 

Figure 4-15, The functional classifications of intersection leg where the crashes happened. 43 

Figure 4-16, Collision type of crashes .................................................................................. 44 

Figure 4-17, Crash severity type of six-year crashes happened at intersection. ................... 45 

Figure 4-18, Weather conditions of crashes at intersections. ............................................... 45 

Figure 4-19, Road surface conditions of crashes at intersections. ........................................ 46 

Figure 4-20, Lighting condition of crash at intersections. .................................................... 47 

Figure 4-21, Intersections control types of crashes. ............................................................. 47 

Figure 4-22, Intersection major road AADT scatter and histogram graphs. ........................ 50 

Figure 4-23, Intersection total AADT scatter and histogram graphs. ................................... 51 

Figure 4-24, Intersection major road STRAVA scatter and histogram graphs. .................... 52 

Figure 4-25, Intersection minor road STRAVA scatter and histogram graphs. ................... 53 

Figure 4-26, Intersection total STRAVA scatter and histogram graphs. .............................. 54 

Figure 4-27, Bicycle crash count for each year in study area ............................................... 56 

Figure 4-28, Bicycle crash count for each year in Seattle (Source: SDOT, 2015) ............... 56 

Figure 4-29, Crash frequency summary ................................................................................ 56 

Figure 4-30, Collision type summary ................................................................................... 57 

Figure 4-31, Collision injury severity summary ................................................................... 57 

Figure 4-32, Road condition and light condition summary .................................................. 58 

Figure 4-33, Weather condition summary ............................................................................ 59 

Figure 4-34, Average annual daily traffic volume distribution ............................................ 60 

Figure 4-35, Average annual daily bicycle volume distribution ........................................... 60 

Figure 4-36, Scatter plot of AADT vs AADB ...................................................................... 62 

ix 



  

     

     

     

  

  

Figure 4-37, Scatter plot of AADT vs crash ......................................................................... 63 

Figure 4-38, Scatter plot of AADB vs crash ......................................................................... 63 

Figure 6-1, Dispersion of data .............................................................................................. 80 

x 



  

 

    

    

    

   

     

   

      

     

   

      

        

     

    

    

     

     

      

      

        

       

     

      

    

    

 

  

Tables 

Table 1-1 Dangerous situation exposure at intersections ...................................................... 3 

Table 2-1 Bicycle crash type summary.................................................................................. 10 

Table 2-2 Requirements for data sets for building SPFs ....................................................... 16 

Table 3-1 Code optimization improvements.......................................................................... 29 

Table 4-1, The cause of crashes happening in intersections. ................................................ 55 

Table 6-1, Poisson regression results (log link) .................................................................... 76 

Table 6-2, 95 percent interval results (log link) .................................................................... 76 

Table 6-3, 95 percent interval results .................................................................................... 76 

Table 6-4, Negative binomial regression results (log link) ................................................... 77 

Table 6-5, Negative binomial regression results 95 percent interval (log link) .................... 77 

Table 6-6, Negative binomial regression results 95 percent interval. ................................... 78 

Table 6-7, Goodness of fit test by deviance .......................................................................... 78 

Table 6-8, Check dispersion ................................................................................................. 79 

Table 6-9, Poisson regression results .................................................................................... 79 

Table 6-10, Poisson regression model Estimation 95 percent confidence interval .............. 80 

Table 6-11, Negative binominal regression results ............................................................... 81 

Table 6-12, Negative binomial regression model estimation 95 percent confidence interval 81 

Table 6-13, Zero-inflated negative binominal - count model coefficients ........................... 82 

Table 6-14, Zero-inflated negative binominal - count model coefficients 95 percent CL ...86 

Table 6-15, Zero-inflated negative binominal - zero-inflation model coefficients .............. 82 

Table 6-16, Zero-inflated negative binominal - zero-inflation model coefficients 95 

percent CL ............................................................................................................................. 82 

Table 6-17, Likelihood ratio test results ............................................................................... 83 

Table 6-18, Vuong non-nested hypothesis test-statistic ....................................................... 83 

xi 



  

 

 

xii 



 

 

     

 

  

 

  

 

 

 

 

  

   

     

    

   

  

    

 

   

 

 

  

     

  

   

 

 

CHAPTER 1 INTRODUCTION 

1.1 Problem Statement 

In 2012, 726 bicyclists were killed in crashes with motor vehicles in the United States, and 

there were 25 bicyclist fatalities in the Pacific Northwest (Alaska, Idaho, Oregon, and 

Washington). The USDOT reported that bicycle fatalities “have steadily increased since 2009,” 

as shown in Figure 1-1 (USDOT 2014). Recent studies have indicated that cyclists are 12 times 

more likely to be killed per distance traveled (Beck et al., 2007) than automobile occupants. The 

U.S. rate of bicycle fatalities is double that of Germany and triple that of the Netherlands, both 

in terms of number of trips and in distance travelled (Pucher and Dijkstra, 2003). Yet despite the 

dangers, individuals are increasingly choosing to bike throughout the country and especially in 

the Pacific Northwest (Milne and Melin, 2014).  

Figure 1-1 National bicycle fatalities in traffic crashes, 2009-2012 (Source: USDOT, 2014) 

Engineers and planners face three interrelated challenges when conducting safety 

analysis for bicyclists. The first is the problem of insufficient data about bicycle crashes, 

specifically “near miss” crashes or where bicyclists are choosing to ride or not ride because of 

perceived safety concerns.  Schimek (2014) suggested that as many as 89 percent of bicycle 

accidents go unreported since they often do not incur insurance claims or traffic violations. The 

second problem is the lack of tools for estimating bicycle volumes. Traditional travel demand 

models, such as the ubiquitous 4-step model, produce very poor results for bicyclists, and 

without reliable volume information it is very difficult to prioritize accident locations. For 

example, an intersection with only a few crashes might deserve highest priority if it exhibited a 

high crash rate (crashes/volume). Third is the lack of tools to analyze proposed improvements. 

For highway and other road projects, engineers can use safety performance functions (SPF) to 

predict the expected number of automobile crashes for a given location and compare how 

different improvement projects might reduce accident rates by using crash modification factors 

(CMF). The current Highway Safety Manual does not include any SPFs or CMFs for bicycles 

(AASHTO, 2010). 
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1.2 Background 

Secretary Anthony Foxx has declared bicyclist safety a top priority for the USDOT and 

two months ago it launched what is being called “the most innovative, forward-leaning, biking-

walking safety initiative ever” (Foxx, 2014). The initiative will include increased funding for 
bicycle infrastructure and research (USDOT, 2014). 

In the past, transportation data have largely been collected by expensive fixed 

mechanical sensors and manual observation, both of which appear increasingly archaic in a 

world accustomed to mobile communications, instantaneous information sharing, and massive, 

low cost data collection. In particular, the rise of mobile computing presents an incredible 

opportunity for extracting vast quantities of useful data for transportation planning and 

management, without the need to maintain large networks of sensors. Many public and private 

agencies have identified “crowdsourcing,” i.e., outsourcing of information gathering to the 

public, as a rich, low cost, and highly scalable framework for data acquisition and problem 

solving (e.g., Krykewycz et al., 2011; Jin et al., 2013). A search of relevant literature provides 

no universally agreed upon definition of crowdsourcing, but it is generally regarded as an online 

participatory activity initiated by an organization to engage a group of individuals (i.e., the 

public or a subset thereof) in the completion of voluntary tasks toward the collaborative 

resolution of a problem (Estellés-Arolas and González-Ladrón-de-Guevara, 2012). Thus, in the 

context of transportation, the “crowd” consists of consumers or users of the transportation 

facility in question, or those who are otherwise invested in the issue at hand (Brabham, 2013). 

The problem to be addressed, then, usually takes the form of some planning or management 

research question identified by a public agency or consultant that can benefit from the input of a 

large number of individual users (Molina, 2014). User input could include self-reported travel 

data, attitudes and ideas regarding current and planned infrastructure elements, and user reported 

traffic and infrastructure status information. 

A number of recent studies have demonstrated a range of possible applications of 

crowdsourcing in transportation planning and management. For example, Krykewycz et al. 

(2011) developed a crowdsourcing framework for evaluating and mapping bicycle level-of-

service data in Mercer County, New Jersey. This project demonstrated the benefit of large-scale 

voluntary user interaction in valuing inherently subjective measures of bikeability and identified 

several strategies for facilitating active participation by stakeholders. Hood et al. (2011) 

developed the CycleTracks smart phone application to collect cyclist trajectory and trip purpose 

data in the San Francisco area using built-in GPS capabilities. The resulting data were used to 

develop a route choice model, and to estimate marginal rates of substitution for specific features 

and link characteristics. The CycleTracks application is now in use in the Seattle, Washington, 

area, providing an excellent data resource for the efforts described in this proposal. This project 

expanded on previous work to addresses two key challenges in the application of crowdsourcing 

to non-motorized transportation decision making. First, this project built on the work described 

in Hood et al. (2011) to enhance a set of generalized tools for the analysis of cyclist exposure 

2 



  

  

   

 

 

  

   

 

   

  

    

  

  

  

  

  

  

  

  

  

data. Second, a framework for the application of crowdsourced bicycle incident and hazard data 

to the analysis of user risk exposure was demonstrated. 

In a previous 2014 PacTrans project, the University of Idaho (UI) team developed an 

innovative new method for estimating bicycle volumes and calculating bicyclist exposure to 

dangerous situations. The team conducted a proof-of-concept-test to compare existing and 

expected exposure rates for the proposed Bicycle Master Plan for Bellingham, Washington. 

McDaniel et al. (2014) described the bicycle volume estimation method. Figure 1-2 shows 

estimated annual average daily bicyclists (AADB) for Bellingham, and Table 1-1 compares 

exposure rates for bicyclists. This PacTrans project advanced and expanded this new method in 

various ways, including tailoring the results for the creation of SPFs. 

Figure 1-2 Estimated bicycle volumes for Bellingham, Wash. 
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Table 1-1 Dangerous situation exposure at intersections 

Dangerous 

Situation 

Conditions and Thresholds Scenario 1: 

Existing 

Conditions 

(AADB) 

Scenario 2: 

w/Proposed 

Improvements 

(AADB) 

Change 

(AADB) 

Percent 

Change 

(%) 

Hazardous 

crossing 

cross street:  > 

8,000 AADT, 

> 50 mph, 

> 10% heavy vehicle 

31,595 33,297 +1,702 +5 

Oncoming 

cross 
oncoming left-turning AADT > 2,000 45,577 42,516 -3,061 -7 

Right 

hook 
right turning vehicles > 2,000 AADT 51,603 47,737 -3,866 -7 

Left sneak adjacent vehicles > 8,000 AADT 

oncoming vehicles > 8,000 AADT 

9,015 8,798 -217 -2 

Safety performance functions (SPFs) are statistical regression models used to estimate 

the predicted average crash frequency for a specific site type (e.g., an individual roadway 

segment or an intersection) through the mathematical relationship between frequency of crashes 

and the most significant causal factors.  The Highway Safety Manual (HSM) documents how to 

predict crashes at similar intersections or road segments by using the SPF as a base and 

adjusting it with “crash modification factors” based on the specific geometrics or other features 
of the location (Nordback et al., 2014).  The current HSM (2010) includes predictive methods 

primarily for motor vehicles on rural two-lane, two-way roads, rural multilane highways, 

intersections, road segments, and urban/suburban arterials, but there is no bicycle-specific safety 

performance function included.   In Oregon, Dixon et al. (2012, 2013) developed specific safety 

performance functions for driveways and roundabouts to quantify their safety improvement 

potentials. 

In recent years, non-motorized transportation, specifically cycling, has been promoted by 

authorities in the Pacific Northwest—Seattle, Wash., and Portland, Ore., in particular—as an 

alternative, healthy mode of travel.  The major challenges for developing bicycle-specific SPFs 

are twofold: insufficient bicycle crash data and bicycle volume data on a wide range of bicycle 

facility types (Nordback et al., 2014).   

Even if bicycle SPFs are developed from other locations, all associated SPFs for these 

facility types should be calibrated when they are applied to a different location. The bicycle 

ADT and volume exposure data are typically heterogeneous in nature; as a result, the variance is 

usually significantly different from the mean, which causes an over-dispersion issue (AASHTO, 

2010). Therefore, the negative binomial model was used to develop the bicycle safety 

performance function in this research.  A list of significant variables needs to be identified to 

develop a bicycle safety performance function, including bike ADT, pedestrian volume 

(exposure), number of left turn lanes, presence of bike lanes, presence of bus stops, etc. 
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This project built on a previous 2014 PacTrans project, “Data Collection and Spatial 

Interpolation of Bicycle and Pedestrian Data,” led by the UI team in collaboration with the UW 

team. In that project, a GIS tool was created to analyze exposure to dangerous situations for 

bicyclists and tested with case study data from Bellingham, Washington. This PacTrans project 

improved the tools by incorporating crowdsourced bicycle data and tailoring the analysis and 

results for SPFs.  This project complements a project led by the OSU team on “Risk Factors for 
Pedestrian and Bicycle Crashes” with Oregon Department of Transportation, and the five-year 

(2007 – 2012) geo-coded crash data set from ODOT and the risk factors identified from this 

project will support this PacTrans project in the bicycle safety performance functions 

development process. 

1.3 Project Objectives, Approach/Method, and Report Organization 

This project created tools, guidelines, and repeatable processes that engineers and 

planners can use to 

• analyze crowdsourced bicycle data 

• calculate bicycle exposure to dangerous situations 

• create and analyze safety performance functions for bicyclists. 

This project was divided into three tasks, which were completed by three institutes: University 

of Washington, University of Idaho, and Oregon State University. Each team was responsible 

for specific milestone deliverables throughout the project. The tasks were interconnected so as 

to address the three interrelated challenges defined in the problem statement.  The intermediate 

results for each task were crosschecked by the other teams, as the results from one task served as 

inputs to other tasks. The UW team's analysis of crowdsourced data was used by the UI team to 

estimate bicycle volumes (exposure) and enhance GIS tools, which were used by the OSU team 

to create SPFs. The actual subtasks were slightly different from the original plan, and the 

subtasks for each institute are summarized below. Some tasks required cooperation between 

institutes, and because of too much detail, the cooperation process is not described here: 

University of Washington:  

• Create tools for analyzing crowdsourced bicycle data 

• Conduct literature review on crowdsourcing non-motorized travel data 

• Prepare and preprocess GIS bicycle dataset 

• Develop framework for crowdsourcing incident and hazard data 

• Write report documenting work and findings 

University of Idaho: 

• Create tools to calculate bicycle cxposure 

• Conduct literature review on bicycle accident exposure 

• Prepare GIS data (bicycle counts, street network, etc.) 
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• Use OD-centrality to estimate bicycle demand 

• Analyze dangerous situation metrics 

• Write report documenting work and findings. 

Oregon State University 

• Create bicycle safety performance functions 

• Conduct literature review on bicycle SPFs 

• Synthesizing the data and other sources 

• Develop the state-specific bicycle SPFs 

• Calibrate and validate the bicycle SPFs 

• Write report documenting work and findings 

• Combine and finalize report. 

The two case study communities for this project were Seattle, Wash., and Portland, Ore. 

They both represent urban metropolitan areas, and Seattle has larger size than Portland. Seattle 

is the largest city in the Pacific Northwest region of North America.  The population of Seattle is 

about 652,405, with around 3.6 million in the greater Seattle Metropolitan area.  The bicycle 

mode share for Seattle rose to 22 percent in 2011, and it is expected to increase.   In Chapter 2, 

literature reviews of bicycle risk exposure, SPF, and crowdsourcing data are described. Chapter 

3 describes how engineers improved the usability of a GIS tool that had been created during a 

previous PacTrans project. Engineers and planners can use the GIS tool to estimate bicycle 

exposure when they conduct safety analyses. The original tool had some weaknesses. Engineers 

improved the tool by (1) streamlining the tool’s operation and (2) decreasing the tool’s computer 

execution time. Chapters 4 and 5 describe how, based on the first bicycle SPFs created by 

Krista Nordback in 2013, we used STRAVA bicycle count data (a type of crowdsourced bicycle 

travel data), other traffic count data, and bicycle crash data to establish Pacific Northwest SPFs, 

especially for Portland and the Seattle Metropolitan area, in terms of bike counts and crash 

frequencies for intersections. Other models are were applied, and the best model for SPF was 

chosen. The last chapter contains conclusion about what was done and provides 

recommendation for future work. 
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CHAPTER 2 LITERATURE REVIEW 

2.1 Crowdsourcing Literature 

Since Jeff Howe coined the term “crowdsourcing” in 2006 (Howe, 2006), it has become 

a hot topic in the world. Although it is hard to find a universal definition for this relatively recent 

concept, Enrique Estelles-Arolas provided a consistent and exhaustive definition after 

qualitatively researching the main elements of crowdsourcing: crowd, initiator, and process 

(Estellés-Arolas, 2012). Generally, crowdsourcing is regarded as an online participatory activity 

initiated by an organization to engage a group of individuals who vary in knowledge, 

heterogeneity, and number in the completion of voluntary tasks toward the collaborative 

resolution to a problem, providing mutual benefit.  

Four problem-based approaches are identified as the most useful for governments as the 

crowdsourcing initiator: knowledge discovery and management, distributed human intelligence 

tasking, broadcast search, and peer-vetted creative production (Brabham, 2013). These 

approaches aim to address different kinds of problems and have distinct requirements for crowd 

participation. Knowledge discovery and management tasks crowds with gathering and collecting 

information or data into a common location and format; distributed human intelligence tasking 

is appropriate for analyzing large amounts of information; broadcast search is meant to handle 

empirical problems such as scientific problems; and peer-vetted creative production is used to 

solve problems related to matters of taste or market support, such as design and aesthetic issues. 

In order to assess whether crowdsourcing is an appropriate tool and which approach is most 

useful for the problem h to be addressed, scholars developed a framework to evaluate the 

appropriateness of crowdsourcing for governance. Figure 2-1 provides an illustration of 

assessing logic. The first question should be whether the problem that needs to be addressed is 

related to an information management task or ideation task. With an information management 

task, the researchers need to determine whether the task is more relevant to locating and 

assembling information or to existing information analysis. The former type of task is best 

suited to knowledge discovery and management; the latter is suited to distribute human 

intelligent tasking. With an ideation problem, the question is whether it requires empirical 

experience or relates to taste and popular support. The former is best suited to broadcast search, 

and the latter is appropriate for peer-vetted creative production.  
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Figure 2-1 Decision tree for crowdsourcing method selection (Source: Brabham, 2013) 

Planners and managers are continuously hindered by a lack of bicycle related data, such 

as bicycle count data, crash data, and trip data. Therefore, crowdsourcing has been being used as 

a powerful tool to address the data issue because of its capability to gather and collect 

information through the effort of numerous individuals (Molina, 2014). The Illinois Department 

of Transportation (IDOT) and Chicago Police Department (CPD) developed a web-based 

application called Chicago’s Bicycle Crash Map for published bicycle crash data and also for 

collecting bicycle crash and near-miss data from bicyclists’ self-reporting (Quartuccio, 2014). 

The San Francisco County Transportation Authority (SFCTA) developed a phone application 

called CycleTracks that allowed bicyclists to log their bike trip routes conveniently. It also 

allowed route choice, trip purpose and demographics data to be collected (Charlton, 2010).  

Previous research has summarized the application of crowdsourcing to bicycle planning projects 

(Molina, 2014). Molina (2014) categorized bicycle projects into five main types in which 

crowdsourcing was implemented, including facility demand, network planning, bike safety, 

suitability, and route demand modeling. In this research, ten projects were selected by two 

standards, one being that they were representative of the main five project types and the other 

that the projects provided available documents online or in print. The main purpose of these ten 

projects was data collection, and half of them had the goals of gathering the preferences of 

specific problems. For example, Capital Bike Share project developed a web-based application 

to collect the preferences for bicycle parking locations by users’ votes. Web-based applications 

and smartphone applications are the most used tools for crowdsourcing in the bicycle planning 

field.  

Several scholars have evaluated the effectiveness and quality of crowdsourcing as a 

bicycle-related data collection method. Ben Jestico compared data from the crowdsourced 

fitness app provided by STRAVA.com to those from manual cycling counts in Victoria, British 

Columbia, to evaluate the representative degree of crowdsourced fitness data for ridership 
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(Jestico, 2016). The results indicated that the crowdsourced fitness data provided by 

STRAVA.com were biased in representing the ridership, but they still could be used to predict 

categories of ridership and map spatial variation. Watkins compared two data sets collected from 

two smartphone-based apps, Cycle Atlanta and STRAVA, to explore the method of mapping 

cyclist movements in an urban area by using GPS data (Watkins, 2016). Based on the study’s 

outcomes, the author suggested that the smartphone-based data were likely biased and that the 

apps could complement but not replace large-scale bicycle volume counting programs. 

2.2 Bicycle Crash Literature 

A bicycle crash is defined as an event in which the bicyclist hits the ground, a motor 

vehicle, road infrastructure, or any other solid object for a reason that leads to damage to body or 

property (Lindman, 2015). Scholars and planners have put a lot of effort into researching bicycle 

safety problems from several perspectives, such as crash type, severity, and data collection. 

2.2.1 Crash Types 

A better understanding of bicycle crash types and characteristics would be useful for 

planning and policy making. The Federal Highway Administration (FHWA) developed a course 

on bicycle and pedestrian crash types that provides detailed descriptions of crash characteristics, 

crash rates, exposure, and a grounding in crash typing to engineers, planners, scholars, and law 

enforcement personnel for clarifying their understanding of how crashes occur and how to avoid 

them (Hunter, 1996). The National Highway Traffic Safety Administration (NHTSA) 

summarized the most common bicycle types in research on how to prevent bicycle crashes. 

Although most previous research has emphasized bicycle-motor vehicle crashes, Paul Schepers 

conducted an analysis on single-bicycle crash types and characteristics by using a questionnaire 

study (Schepers, 2012). Single-bicycle crashes were categorized into four types: infrastructure-

related crashes, cyclist-related crashes, bicycle malfunctions, or unknown. Table 2.1 lists the 

most common bicycle crash types by summarizing several studies focused on bicycle crash 

types (Schepers, 2011). 
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Table 2-1 Bicycle crash type summary 

No. Crash Type Description 

1 Bicyclist or motorist rides 

through stop sign or red 

light 

The bicycle or the motorist fails to follow the 

rules of the road including obeying all signs 

and signals 

2 Wrong way riding The bicyclist ride on the road or sidewalk 

against the flow of traffic 

3 Bicyclist turns left in front 

of traffic 

The motorist turns right 

4 Bicyclist enters road from a 

driveway, alley, curb or 

sidewalk 

The bicyclist fails to stop, slow and look 

before entering a roadway from a residential 

or commercial driveway 

5 Motorist passes a bicyclist  A motorist fails to see and avoid the bicyclist 

until it is too late to avoid a collision 

6 Motorist turns right or left 

into bicyclist 

The motorist takes a right or left turn, and the 

bicyclist rides in either the same or opposing 

direction 

7 Motorist enters road from a 

driveway or alley 

The motorist fails to stop and look before 

entering a roadway 

8 Multiple threads The bicyclist fails to clear the intersection 

before the light turns red. 

2.2.2 Crash Injury Severity 

Generally, bicycle crash injury severity is divided into four levels: fatal injury, 

incapacitating injury, non-incapacitating injury, and possible/no injury (Reynolds, 2009). 

Previous research analyzed the factors that affect the level of crash injury severity from several 

distinct perspectives. Margaret, Attewell and Thompson developed a regression model to 

analyze the effectiveness of helmets for reducing the injury severity levels of bicycle crashes 

(Thompson, 1990). The results indicated that bicycle helmet use has a significantly protective 

effect in reducing crash injury severity, especially for reducing head, brain and neck injuries 

(Attewel, 2001; Dorsch, 1987).  

Several scholars have conducted research to explore the factors that highly affect the 

injury severity of bicyclists in bicycle-motor vehicle accidents by using regression-based models 

on police-reported crash data, and the results showed that several factors more than double the 

probability of fatal injury in a bicycle-motor vehicle accident, including darkness with no 

streetlights, inclement weather, peak hour in the morning, head-on and angle collision, speeding 
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involved, vehicle speeds of about 48.3 km/h, a truck involved, bicyclists age 55 or more, roads 

without a median/division, running over the bicyclist, etc. (Yan, 2011). They also highly 

recommended the installation of medians, division between the roadway and bikeway, 

improvements in illumination on road segments, and speed limit reductions. 

Additionally, a few previous studies have examined the influence of factors related to 

bicycle crash injury severity in specific situations. Jeremy R. Klop examined the physical and 

environmental factors that influence the injury severity level of bicycle crashes on two-lane, 

divided roadways. An ordered probit model was used to model the crash and inventory data 

collected by the North Carolina Highway Safety Information System. Analysis results showed 

that the factors of straight grades, curve grades, darkness, fog, and speed limit would heavily 

increase injury severity, and the factors of higher AADT, dark conditions with street lighting, 

and the interaction between speed limit and shoulder-width decrease injury severity level (Klop, 

1999). Morteza Asgarzadeh explored the impacts of intersection and street design on the injury 

severity of bicycle-motor vehicle crashes (Asgarzadeh, 2016). A multivariate log-binomial 

regression model was used to model 3,266 BMVC data from New York City police records, 

which included geographical information and latitudes/longitude data. The research found that 

1) crashes at non-orthogonal intersections and crashes at non-intersection street segments had a 

higher risk of severe injury than crashes at orthogonal intersections; 2) crashes with trucks 

involved and buses involved had more probability of resulting in a higher injury severity level; 

and 3) there was no relationship between street width and injury severity level. 

2.2.3 Data Collection 

Traditionally, police reports and hospital reports are the main sources for bicycle crash 

data. Most previous research on bicycle safety has used these two data source as their research 

input. Given that a quantitative methodology is widely used in bicycle safety research and that 

its performance is highly dependent on data accuracy and coverage, several scholars have 

conducted analyses to examine the data quality of both data sources. Agran (1990) compared 

police reported data to the data provided by a hospital monitoring system for children under 15 

years old injured as pedestrians and bicyclists by bicycle-motor vehicle crashes in Orange 

County, Calif. The comparison was conducted with respect to demographics and circumstances 

by using cross-tabulations of corresponding variables. The results indicated that the under-

reporting rate for bicyclists was a conservative 10 percent and was composed of non-traffic 

cases. The author also claimed that police agency reporting requirements led to under-reporting 

and that the police injury severity scale barely correlated with a scale based on medical 

diagnoses. Stutts (1990) compared data reported from North Carolina hospital emergency rooms 

during the summers of 1985 and 1986 with the police-reported bicycle accident data from the 

North Carolina state government for the same periods. The results were that only 10 percent of 

the data overlapped; whereas more than 60 percent of bicyclists were 5 to 14 years old, and 70 

percent were male in the hospital-reported data, in the police-reported data set less than half the 

crashes involved bicyclists under 15 and 85 percent were male. In addition, almost all of the 

police-reported accidents involved motorists, but less than a fifth in did in the hospital-reported 
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data set. As seen from the result of the literature review, both police-reported and hospital-

reported bicycle crash data would cause bias. Scholars and professionals have made efforts to 

explore the reasons for the biased data and have also developed new reporting methods to 

improve data quality. It has been suggested that incident form design affects the quality of 

police-reported crash data. Lusk (2014) redesigned the police reporting template by adding 

bicycle-crash-scene coded variables that included four bicycle environments, 18 vehicle impact-

points, motor vehicle/bicycle crash patterns, in/out of the bicycle environment, and bike/relevant 

motor vehicle categories and used multiple logistic regression to test the crash data, which were 

improved by redrawing the crashes and entering the new bicycle-crash-scene details into a 

corresponding data spreadsheet. The author suggested that bicycle-crash-scene codes should be 

included in police reporting templates so that crash analysis can be conducted with big data 

methodology on several novel topics of bicycle safety (Lusk, 2014). 

2.3 SPF Literature 

SPFs are crash prediction models (Federal Highway Administration, 2013). They are 

essentially mathematical equations describing the number of crashes of various types and site 

features, and they always include traffic volume AADT but also may include other site features, 

for example lane width, horizontal curves, the presence of turn lanes, etc. These models can be 

used in network safety screening, determining the safety impact of design changes, evaluating 

the effects of engineering treatments, and so on (Federal Highway Administration, 2013).  

Motor vehicle SPFs for normal roadway types are established in the Highway Safety 

Manual (HSM). These provide an evidence-based tool to estimate motor vehicle crashes by 

traffic volume and other factors that can influence the results (American Association of State 

Highway and Transportation, 2010; Nordback, Marshall, & Janson, 2014). However, few 

studies have addressed SPFs for estimating bicycle crashes. 

Nordback et al. 2014 created SPFs for bicycles and applied this method to Boulder city 

in Colorado. The authors used collision, AADT, and AADB data to build the function 

describing the relationship between traffic and bicycle volumes with crash frequency at 

intersections. They found that with the bicycle and motor vehicle volume increases, the 

frequency of cyclist crashes increases but the crash rate decreases. In other words, at 

intersections the cyclist crash frequency has a positive relationship, whereas the cyclist crash 

rate has a negative relationship with traffic and bicycle volumes. This relationship has been 

previously studied by others has been found to be not linear and is called “safety in numbers” 

(Ekman, 1996; Jacobsen, 2003; Jonsson, 2005; Nordback et al., 2014; Robinson, 2005).  

This relationship, which captures the number of crashes and the exposure to crashes, is 

known as SPF, which is a more efficient method for prioritizing intersections (Kononov & 

Allery, 2003; Nordback et al., 2014). This method is also a useful tool for prioritizing segments. 

Nordback et al. established the process and method of creating SPFs for bicyclists by using a 

negative binomial generalized linear model with log link, and this model was based on annual 

average daily traffic (AADT) and annual average daily bicycle (AADB) data. The authors 
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compared negative binomial regression and poisson regression, and they found that the former 

can fit the data better because in the collision data sets has feature of variance triples the mean; 

in other words, the crash data are over-dispersed. In Poisson distribution, the mean equals the 

variance, but when the variance is larger than mean, the situation is called over-dispersion 

(Federal Highway Administration, 2013). The three peak hours counted for both bicycles and 

traffic, provided by the city of Boulder (Boulder & Even, 2012), were adjusted to AADT and 

AADB by using daily and monthly factors (Ferrara C, 2001). Negative binomial distribution was 

determined by Long (1997). 

Nordback et al. did a sensitivity analysis on changes in AADB. The results showed that 

with higher AADB, the corresponding parameter was still well under 1, which indicated that the 

SPF was still sublinear; whereas the parameter for lower AADB was closer to zero, which 

indicated that the AADB was not an important factor in determining motorist-cyclist crashes. 

Further analysis should investigate this observation. In addition, the estimations of the 

parameters for AADT and AADB were at the same magnitude, indicating that the collisions 

were similarly sensitive to both volumes; however, the AADT exponent was one or two orders 

of magnitude higher than AADB exponent, so the change of AADB had more critical influence 

on crashes than same change in AADT. Therefore, getting accurate estimations of bicyclist 

volumes is more important for analyzing SPF (Nordback et al., 2014). Future work can use 

larger data sets and more accurate AADB and include facility type in the analysis. 

This analysis only captured the connection between volumes and crashes but did not 

reveal the causation between them. In other words, the reasons connecting traffic and bicycle 

volumes and crash frequency were not explained. The reasons could be that increasing bicycle 

volumes may lead to safer motorist and bicyclist behavior; or more bicyclists may be riding on 

safer facilities. Other studies stated that more bicyclists trigger changes in driver behavior, but 

the conclusion was based on logical speculation not empirical data analysis (Ekman, 1996).  

Other characteristics of the road have been studied, such as bicycle infrastructure, 

bicycle lane width, street light, and the angle of grade that may influence the crash-volume 

relationship (Reynolds et al., 2009). In Dolatsara's (2014) study, crash data, volume data, and 

road geometric data were collected. Traffic and bicycle volumes were provided by the 

Department of Transportation; geometric data included different lane numbers, bike lane 

characteristics, posted speeds, bus stops, and so on; the crash data collected came from 164 

intersections in four cities in Michigan, and crashes happened within a 500-ft buffer of the 

center of an intersection (Dolatsara, 2014). Intersection traffic volumes were collected by 

combining four directions of ADT. The 500 feet were calculated by Stopping Sight Distance 

(SSD) by Fambro et al, (1997). However, more practically, 250 feet has been used as a diameter 

for assigning crashes to an intersection (Dolatsara, 2014; Vogt & Bared, 1998). Justifying which 

threshold should be used to assign the crashes was critical for this project, since that threshold 

directly influences crash frequency. Portland and Seattle both have relatively small street blocks, 

so with the crash-determining buffer diameter increasing, more crashes could be incorrectly 

assigned to intersections. In other words, the error could be large. So the 250-ft threshold as used 

in our SPF project to identify the intersection where the crash happened. 
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Dolatsara also mentioned that the Poisson distribution cannot capture the over-dispersion 

of crash data (American Association of State Highway and Transportation, 2010), so the 

negative binomial regression was employed (Dolatsara, 2014). The significant variables 

included in the SPF were ADT, number of left turn lanes, presence of bike lanes, and presence 

of bus stops (Dolatsara, 2014). This suggests that engineers may include other factors besides 

traffic and bicycle volumes in an SPF project. 

Dolatsara (2014) concluded that a higher exposure of bike volumes, the presence of bike 

lanes, the presence of bus stops within 0.1 mile from an intersection, and an increased number 

of left turn lanes are associated with more bicycle crashes. However, that doesn’t mean the bikes 

cause more crashes because there are more bicycles inside bike lanes than outside bike lanes 

(Dolatsara, 2014). This finding is consistent with the Nordback et al. (2014) paper. Bicycle 

facility-related studies have also been conducted by others. Reynolds et al. (2009) concluded 

that there is evidence to support that fact that the purpose-built, bicycle-specific facilities can 

reduce bicycle collisions, and street lighting, paved surfaces, and low-angled grades are also 

factors that improve bicycle safety. 

The Federal Highway Administration (2013) established the steps for developing SPFs 

for jurisdictions, and these are as follows: 

Step 1: Determine the use of the SPF. Is this SPF for network screening, project level 

prediction, deriving CMF, or before-after evaluation using the EB method? 
Step 2: Identify the facility type. The developers need to choose a specific type of facility: 

intersection, segment, or ramp? 

Step 3: Compile the necessary data. According to the purpose of building the SPF, the sample 

size and corresponding data set will be different. The guidance on the minimum sample 

size can be found in the SPF Decision Guide (Srinivasan, Carter, & Bauer, 2013). For 

our project purposes, the effort requirements for “project level” were recommended. In 

other words, the samples needed to include 30 to 50 sites, with at least 100 crashes per 

year for the total group, and three years of data. 

Step 4: Prepare and clean up the database. Statistical plotting tools can be used to check for 

outlier and data entry errors. 

Step 5: Develop the SPF. Estimate the regression coefficients, calculate model diagnostics such 

as goodness-of-fit, and examine residual and Cumulative Residual Plots. The basic SPF 

form for a segment is: 

Y = L × 𝑒𝑎 × (𝐴𝐴𝐷𝑇) 

The basic SPF form for an intersection is: 

Y = 𝑒𝑎 × (𝐴𝐴𝐴𝐷𝑇𝑚𝑖𝑛𝑜𝑟) × (𝐴𝐴𝐴𝐷𝑇𝑚𝑎𝑗𝑜𝑟) 

Step 6: Develop the SPF for the basic condition. 

Step 7: Develop CMFs for specific treatment. A CMF is a multiplicative factor used to 

compute the expected number of crashes after a given countermeasure has been 
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implemented at a specific site (Crash Modification Factor Clearinghouse, n.d.). This 

process was not included in this project. 

Step 8: Document the SPFs. The content of documentation should include the following: 

• Crash type(s)/severity(s) for which the SPF was estimated  

• Total number of crashes (by type and severity) used in the estimation  

• Purpose of the SPF (e.g., network screening, project level analysis, CMF 

development, etc.)  

• State(s)/county(s)/city(s) that were used 

• Facility type (e.g., rural 2 lane, 3 leg stop-controlled intersection, freeway to freeway 

exit ramp)  

• Number of years used in the estimation of SPF 

• Number of units (segments, intersections, ramps)  

• Minimum, maximum, and average length of segments  

• Minimum, maximum, and average AADT 

• Minimum, maximum, and average values for key explanatory variables  

• Coefficient estimates of the SPF 

• Standard errors of the coefficient estimates 

• Goodness of fit statistics  

• Discussion of potential biases or pitfalls. 

Identifying variables in function form is the most critical step in the process of 

developing the SPF. Forward and backward stepwise regressions can be used to determine 

significant variables. T-statistic, Chi-square statistic, Akaike’s information criterion (AIC), and 

Bayesian Information Criterion (BIC) can be used to compare models. Cumulative residual Plots 

was further recommended to obtain insight into whether the functional form has been 

appropriately selected (Federal Highway Administration, 2013; Hauer, 2004). The potential 

issues may include over-dispersion which can be overcome with the negative binomial model. 

Temporal and spatial correlation can be solved by averaging the values of the site 

characteristics, e.g., averaging lane width for three years for the same location (Federal Highway 

Administration, 2013).  

Srinivasan et al. (2013) determined the data sets needed for developing SPFs for 

different purposes for traffic SPF, shown in Table 2-2: 

Table 2-2 Requirements for data sets for building SPFs 
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2.4 STRAVA Data Literature 

Traditional bicycle data counting typically refers to manual counts of bicycles during 

peak hour periods (Jestico, Nelson, & Winters, 2016), and it is used to calculate daily, monthly, 

or yearly volumes by multiplying daily or seasonal factors. However, traditional count methods 

lack spatial details and temporal coverage (Jestico et al., 2016; Ryus et al., 2014). Global 

Positioning Systems (GPS) embedded in mobile devices allow people to track and map their 

locations, and researchers can use those data can to analyze bicycle behavior and route choice 

(Broach, Dill, & Gliebe, 2012; Casello & Usyukov, 2014; Hood, Sall, & Charlton, 2011; Jestico 

et al., 2016; Le Dantec, Asad, Misra, & Watkins, 2015). Crowdsourcing fitness apps in mobile 

devices provide a new source of data for transportation agencies and increase the temporal and 

spatial resolution of official counts (Jestico et al., 2016). 

STRAVA® crowdsourcing data based on GPS have been used in different bicycle 

projects and studies all over the world: Queensland, Australia, used them to quantify how a new 

bicycle pathway changed bicyclists’ behaviors; Glasgow, Scotland, analyzed a corridor of 

bicycle activities to provide evidence for new bicycle infrastructure on a street; Austin, Texas, 

combined STRAVA® data with bike share data to explore the impacts of its program on streets 

and on a bike network; the Oregon DOT used them to decide where to build bike counters and to 

adjust existing bike counter locations to capture bicycle behaviors better; Vermont 

Transportation used these data as its key layer for statewide planning design; the University of 

Victoria and University College London used them to model bicycling transportation in their 

areas (STRAVA, 2016a). 

In 2014 STRAVA users accumulated 2,700,000,000 km and 75,700,000 riders all over 

the world (Scott, 2015). While it seems that STRAVA has taken a large proportion of market 

share, it is necessary to be careful about using these data. While Oregon DOT paid $20,000 to 
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purchasing these data, ODOT acknowledged a problem in that STRAVA’s target demographic 
does not represent all bicyclists. It is built for cyclists who treat bicycles as sport but not for 

bicycle commuters (Hunt, 2015). Hunt (2015) warned that it is important to analyze how 

STRAVA represents the real story before we fully believe it. 

However, some existing papers have verified the representation of STRAVA data for all 

bicyclists. Jestico et al. (2016) compared STRAVA data with manual counts data in Victoria, 

British Columbia. The authors compared those two types of data by hourly, AM, and PM peak 

and peak period totals separated by season. They used a Generalized Linear Model (GLM) to 

capture the relationship between STRAVA data and traditional manual count data, and the 

results showed a linear association between them in which one STRAVA count can represent 51 

riders from manual counts. They said that the accuracy of categorical cycling volume can be 62 

percent, but they also mentioned that STRAVA fitness data are a biased sample of ridership; 

however, they can represent categories of ridership and map spatial variance in urban areas with 

high temporal and spatial resolution.  

Watkins et al., (2016) compared STRAVA data with data from another transportation 

agency app called “Cycle Atlanta.” They found that Cycle Atlanta only represented 3 percent of 

manual counts, and there were also differences between STRAVA and Cycle Atlanta. The 

representation should be carefully analyzed because of the biases related to gender of users, 

racing or commuter users, age, and income. However, STRAVA data provide opportunity for 

agencies to obtain data without creating their own app. Watkins et al. concluded that data from 

STRAVA should be compared to data from local sources and weighted appropriately, and they 

can be supplemental to other bicycle counts. Selala and Musakwa, (2016) stated in their studies 

that it is clear that STRAVA data are a useful tool that can provide efficient information for 

decision making and formulation of policies for non-motorized transportation programs. In their 

paper, they also mentioned that only 20 percent of the cycling trips were commuting, whereas 

recreational trips accounted for the other 80 percent in the city of Johannesburg. Therefore, it 

was obvious that there are some levels of bias in STRAVA data, but conclusive decisions should 

be made with more information. In relation to trip time, cycling counts from STRAVA had 

higher numbers in the morning, and the number decreased approaching midday, then started 

increasing after that, finally declining again after 16:00. They said that the numbers recorded by 

STRAVA were affected by the availability of gated communities, income levels, crime levels, 

and the provision of infrastructure (Selala & Musakwa, 2016). 
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CHAPTER 3 ENHANCEMENT OF GIS TOOL FOR ESTIMATING BICYCLIST 

EXPOSURE 

This chapter documents the process of improving the usability of a GIS tool that had 

been created during a previous PacTrans project. Engineers and planners can use the GIS tool to 

estimate bicycle exposure when conducting safety analyses. The original tool had the following 

weaknesses: (1) used numerous disparate Python scripts that were confusing to the uninitiated, 

(2) required tedious intermediate data processing activities, and (3) had a very long computer 

runtime. For example, the bicycle network for Seattle, Washington, was the primary data set 

used for testing and development, and the computer runtime for that data set alone was over 22 

hours. Moreover, the process of preparing intermediate data and calibrating the tool (i.e., 

repeatedly executing runs to check output and tweak input) would take multiple days and even 

weeks to complete. 

Our goals were to (1) streamline the tool’s operation and (2) decrease the tool’s 

computer execution time. The original tool involved eight individual scripts, each requiring 

various amounts of intermediate data processing (see figure 3-1). As part of this PacTrans 

project the new tool was streamlined to just one script. The tool-user now only needs to do basic 

pre-processing of the data.  

Figure 3-1 Original toolbox (the new tool is just one script)  

One of the goals was to decrease the tool’s computer execution time for the Seattle data 
set by 75 percent. Through various innovative changes and optimization of the code we 

exceeded our goal. Figure 3-2 shows the execution time at various benchmark points throughout 

the project. The new tool runs in 10 percent of the original time.   
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Figure 3-2 Improvements in computer execution time (hours) for Seattle 

This report describes the improvements that were made to the tool with a focus on the 

steps that were taken to improve tool process and computer runtime. The material documented 

in this report provides useful guidance for practitioners who will use the tool and helpful 

information for future researchers who might continue to advance the underlying methods. 

3.1 Introduction 

In a previous PacTrans project, researchers at the University of Idaho created a 

geographic information system (GIS) tool that can be used to estimate bicycle volumes 

throughout a city (Lowry et al. 2015). This chapter describes improvements that were made to 

the GIS tool through this subsequent PacTrans project. 

Engineers and planners can use the GIS tool to estimate bicycle exposure on streets and 

pathways (i.e., demand volumes) in order to conduct safety analyses or for other planning 

purposes. The goal of this 2014-2015 PacTrans project was to improve the tool so that it could 

be more easily used by practitioners. The original tool had the following weaknesses: (1) used 

numerous disparate Python scripts that were confusing to the uninitiated, (2) required tedious 

intermediate data processing activities, and (3) had a very long computer runtime. For example, 

to estimate bicycle volumes for the streets of Seattle, Washington, the original tool took 22 

hours to run (computer runtime only). The process of calibrating the tool (i.e., repeatedly 

executing runs to check output and tweak input) would take multiple days and even weeks to 

accomplish during a regular work schedule. 

This chapter describes three specific improvements that dramatically reduced the time 

required to use the tool. Other improvements were made during the time period of this PacTrans 

project, but these three improvements are by far the most significant. The process of making 

these improvements (i.e., identifying problems, proposing solutions, and testing ideas) occurred 

while examining case study data. Primarily, our case study data were for Seattle, Washington, 

and Moscow, Idaho, but included numerous other cities in Washington and Idaho, as well as 
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data from throughout the country as part of a different, but related, project for the Rails-to-Trails 

Conservancy.  

The material documented in this report provides useful guidance for practitioners who 

will use the tool and helpful information for future researchers who might continue to advance 

the underlying methods. The next section provides background about demand estimation and the 

underlying method of the tool. Then, a section for each improvement is presented.   

3.2 Background 

There are primarily two modeling techniques to estimate bicycle volumes: multi-step travel 

demand models and direct demand models (Porter et al. 1999). Multi-step models, such as the 

“four step model,” are data intensive, expensive, and complex (Liu et al. 2012). Direct demand 

models are more simplistic. They often involve linear regression as follows: 

𝐹𝑎𝑐𝑖𝑙𝑖𝑡𝑦 𝐵𝑖𝑐𝑦𝑐𝑙𝑒 𝑉𝑜𝑙𝑢𝑚𝑒 = 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑚𝑥𝑚 (1) 

where the explanatory variables, 𝑥1, … , 𝑥𝑚, represent characteristics of the bicycle facility, such 

as adjacent vehicle volume, adjacent land use, and distance to the city center. The regression 

coefficients 𝛽0, 𝛽1, … , 𝛽𝑚 are derived from observed data (Griswold et al. 2011; Jones et al. 

2010). 

The original GIS tool was made to estimate bicycle volumes using only one type of 

explanatory variable: origin-destination centrality (McDaniel et al. 2015). OD centrality is 

calculated for every link in the network (i.e., street or path segment) by finding the “shortest 

path” between every origin and every destination and counting how many times a link is used. 

The number of times a link is used is that link´s OD centrality. The tool-user supplies two sets of 

data representing origins/destinations: residential parcels and non-residential parcels. The tool 

calculates OD centrality four times for bicycle travel that would go from (1) residential to 

nonresidential, (2) residential to residential, (3) non-residential to residential, and (4) non-

residential to non-residential. Next, a regression model is fit to observed bicycle volumes using 

the four OD centrality values. Finally, the regression model is applied to every link in the 

network.  

3.3 Improvement One: Seamless Tool Process 

The original “tool” was actually a toolbox of eight individual tools. The user had to 

execute all eight tools in succession, with various amounts of data processing in between each 

tool. Figure 3-3 shows the original toolbox and ight individual tools. The tools were developed 

this way because (1) software development was easier through modulation, (2) a few scripts 

(i.e., sub-processes) could be skipped when conducting repeated analyses to save time, and (3) a 

few scripts required the user to select certain options. Our goal was to combine all the scripts 

into one seamless script. 
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Figure 3-3 Individual tools in original toolbox 

The first script, “Create Augmented Network,” was extremely time-intensive, but, 

luckily, could be skipped when conducting repeated analysis. This sub-process creates a copy of 

the user-supplied street network and adds new “augmented” links that represent two directions 

along segments and turn-movements at intersections. For example, a four-leg intersection would 

be punched out and replaced with 12 new links representing turn/crossing movements and 

labeled with a Movement field NBT, NBR, NBL, WBT, WBR, WBL, etc. (see figure 3-4). The 

augmented network is necessary to model bicyclist behavior at intersections. However, once an 

augmented network has been made, it does not need to be made again unless the analyst makes 

changes to the underlying network. For Seattle, Wash., it took the original tool 3 hours to create 

an augmented network. Consequently, we had originally modularized the tool so that the analyst 

would not need to run this sub-process each time. We overcame this challenge by (1) adding an 

if-clause that checked for the presence of an augmented network and (2) optimizing the code 

(for the Seattle data set this sub-process now only takes 20 minutes).  

Figure 3-4 Augmented links at an intersection for turn/crossing movements 

The next two scripts, “Map Count Data” and “Associate Count Data to the Network” 
were modularized so that the tool-user can handle different types of count techniques. Common 

count techniques include screenline, 4-way entering, 4-way exiting, and 12-movement (Lowry et 

al. 2015). However, after a few years of looking at data for numerous cities across the country, 

we concluded that using screenline data (or 12-movement converted to screenline) is the most 

straightforward. (Unfortunately, WSDOT uses a 4-way exiting technique for manual counts. If it 

continues to use this inferior technique, then additional tools should be made to deal with this 

data format.) 

Similarly, we removed user options from all the remaining tools. In the original tool, the 

user could choose between different methods to calculate bicycle stress, levels of aggregation 

when locating origins and destinations, travel distance thresholds when calculating OD 
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centrality, specific regression techniques, and factors for adjusting short duration counts to 

Average Annual Daily Bicyclists (AADB). Our decision to remove these options and “hard 

code” the default choices were based on our experience with data for numerous cities. By doing 
this, the toolbox lost flexibility but gained in terms of simplicity and execution time. 

3.4 Improvement Two: Calculating Bicycling Stress 

As mentioned in the Background section, bicycle volumes are estimated on the basis of 

OD centrality values. OD centrality is determined for every link by finding the “shortest path” 
between every origin and destination. The “shortest path” between ODs is the path between ODs 

with the smallest cumulative bicycling stress. The original tool was made to calculate bicycle 

stress for a street segment in a complicated manner that required the tool-user to pre-code links 

and supply specific facility data. We significantly changed the calculation of bicycle stress as 

part of this PacTrans project and in conjunction with a similar project for the Rails-to-Trails 

Conservancy (Lowry et al. 2016). The method for calculating bicycle stress is based on two 

roadway characteristics: number of lanes and speed limit. This subsection describes the new 

calculation method.   

For a street and trail network composed of a set of links and a set of nodes, denoted E 

and V (in graph terminology, links and nodes are called edges and vertices, respectively) we 

define roadway stress along every link e as: 

𝑆𝑒 𝑏 𝑁𝑒 𝑐 

𝐹𝑟𝑜𝑎𝑑𝑤𝑎𝑦,𝑒 = 𝑎 × ( ) × ( ) 

where 

𝑎 = roadway stress intercept parameter, 

𝑏 = roadway stress speed exponent parameter, 

𝑐 = roadway stress number of lanes exponent parameter, 

𝑆𝑒∗ = comfortable speed parameter for a street segment, 

𝑁𝑒∗ = comfortable number of lanes parameter for a street segment, 

𝑆𝑒 = vehicle speed associated with link e (e.g. speed limit or prevailing speed), and 

𝑁𝑒 = number of lanes on link e. 

𝑆e ∗ and 𝑁e ∗ are basic parameters set by the user on the Stress Excel sheet of 

Bicycle_Parameters.xlsx. 

𝑆 e 

Figure 3-5 Basic stress parameters for a street segment 
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The parameters a, b, and c are advanced system parameters with default values of 0.1, 

3.0, and 2.0, respectively. The default values are recommended but can be changed on the 

Advanced Excel sheet of Bicycle_Paramters.xlsx. 

Figure 3-6 Advanced bicycle stress parameters 

The roadway stress equation produces a number that represents a bicyclist’s marginal 

rate of substitution (MRS) for lanes and speed. In economics, MRS is the rate at which a 

consumer is willing to give up one good in exchange for another good. Hood et al. (2001) and 

Broach et al. (2012) placed GPS trackers on cyclists and used logistic regression to empirically 

identify MRS values for various roadway conditions. For example, Hood et al. (2001) found that 

bicyclists are willing to travel 51 percent farther in a bike lane than on a similar road without a 

bike lane. Likewise, Broach et al. (2012) found cyclists are willing to go 140 percent out of the 

way to avoid a street where Annual Average Daily Traffic (AADT) exceeds 20,000 vehicles per 

day. 

The equation above is a novel way to specify MRS values. It is advantageous because it 

provides a functional form and includes parameters for user preferences. For example, if 𝑆e ∗ and 

𝑁e ∗ are 20 mph and two lanes, respectively, then the following are the MRS values for streets 

with these speed limits and number of lanes. The baseline is an off-street multi use trail. Thus, 

for example, a 25 mph and two-lane street has 20 percent MRS, meaning that riding on that 

street is equivalent to traveling 20 percent farther than if it were a multi-use trail.  

Figure 3-7 Roadway bicycle stress 

The colors indicate levels of acceptable stress and are based on parameters on the 

Advanced Excel sheet of Bicycle_Parameters.xlsx.  The parameters below show that 10 mph 

over the comfortable speed is considered unacceptable and that any increase in the number of 

lanes is unacceptable. Everything in between is tolerable. Thus the colors above are as follows: 
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white = acceptable low stress, yellow = tolerable moderate stress, and red = unacceptable high 

stress. 

Figure 3-8 Unacceptable bicycle stress parameters 

Roadway stress can be reduced if there is a stress-reducing bicycle accommodation 

present. Stress-reducing bicycle accommodations include bike lanes, buffered bike lanes, 

protected bike lanes, etc. The calculation is: 

𝐹𝑠𝑡𝑟𝑒𝑠𝑠, = 𝐹𝑟𝑜𝑎𝑑𝑤𝑎𝑦, ∗ (1 − 𝐹𝑏𝑖𝑘𝑒𝑎𝑐𝑐𝑜𝑚,𝑒) 

where 

𝐹𝑠𝑡𝑟𝑒𝑠𝑠, = stress factor for link e, 

𝐹𝑟𝑜𝑎𝑑𝑤𝑎𝑦, = roadway stress factor for link e, and 

𝐹𝑏𝑖𝑘𝑒𝑎𝑐𝑐𝑜𝑚, = bicycle accommodation stress reduction factor for link e. 

The stress reduction for various bicycle accommodations can be changed on the 

Advanced Excel sheet of Bicycle_Parameters.xlsx. 

Figure 3-9 Stress reduction from bicycle accommodations 

Continuing the example from above, then a protected bike lane that reduces stress by 90 

percent produces the bicycle stress shown in figure 3-10. 
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Figure 3-10 Bicycle stress with a protected bike lane 

The same process is repeated to calculate stress for every intersection crossing movement 

k at intersection 𝑣 ∈ 𝑉 as follows:  𝑆𝑣 𝑏 𝑁𝑣 𝑐 

𝐹𝑐𝑟𝑜𝑠𝑠,𝑣 = 𝑎 × ( ) × ( ) 

𝑆 
where 

𝑎 = roadway stress intercept parameter, 

𝑏 = roadway stress speed exponent parameter, 

𝑐 = roadway stress number of lanes exponent parameter, 

𝑆𝑣∗ = comfortable speed parameter for crossing an intersection, 

𝑁𝑣∗ = comfortable number of lanes parameter for crossing an intersection, 

𝑆𝑣 = vehicle speed associated with the cross street at intersection v (e.g. speed limit or prevailing 

speed), and 

𝑁𝑣 = number of lanes on cross street at intersection v. 

𝑆v ∗ and 𝑁v ∗ are basic parameters set by the user on the Stress Excel sheet of 

Bicycle_Parameters.xlsx. The parameters a, b, and c are same advanced system parameters used 

for the street segment. 

Figure 3-11 Basic stress parameters for an intersection 

And likewise, the stress can be reduced because of bicycle accommodations at the 

intersection.  

𝐹𝑠𝑡𝑟𝑒𝑠𝑠, = 𝐹𝑐𝑟𝑜𝑠𝑠, ∗ (1 − 𝐹𝑐𝑟𝑜𝑠𝑠𝑎𝑐𝑐𝑜𝑚,𝑣) 
where 

𝐹𝑠𝑡𝑟𝑒𝑠𝑠, = stress factor for crossing intersection v, 

𝐹𝑐𝑟𝑜𝑠𝑠,𝑣 = cross-street stress factor for intersection v, and 

𝐹𝑐𝑟𝑜𝑠𝑠𝑎𝑐𝑐𝑜𝑚, = crossing stress reduction factor at intersection v. 
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For example, if the comfortable crossing is 25 mph and three lanes, then a median fefuge 

that reduces crossing stress by 65 percent produces the intersection stress shown in figure 3-12. 

Figure 3-12 Intersection section with a median refuge 

In addition to colored tables like the one above, the Advanced Excel sheet in 

Bicycle_Parameters.xlsx provides two charts to help visualize acceptable stress levels. The user 

can change the stress reduction in the upper left corner orange cell of the table associated with 

the chart. Below the orange line is acceptable low stress, between orange and red is tolerable 

moderate stress, and above the red line is unacceptable high stress. For example, with a bike 

lane, less than 25 mph is only acceptable at two lanes and becomes unacceptable at five lanes. 

Above 35 mph does show on the chart, so is unacceptable even at two lanes. Speeds of 35 mph 

and 25 mph are tolerable at two lanes but unacceptable at three lanes; 25 mph is unacceptable at 

four lanes. 

0% 

10% 

20% 

30% 

40% 

2 3 4 5 6 

Link Stress 

<25 25 30 35 >35 Tolerable Unacceptable 

Figure 3-13 Acceptable stress levels for street segment with a Bike Lane 
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Figure 3-14 Acceptable stress levels for an intersection with a median refuge 

3.5 Improvement Three: Program Optimization 

We made various improvements to the computer code that dramatically decreased the 

computer execution time. Many of the improvements were minor and were due to our 

increasingly better understanding of Python and how ArcGIS integrates with Python. 

Nevertheless, collectively the many minor improvements had significant impact. We also 

accomplished a handful of major changes in the code that each individually produced significant 

enhancement. Over the course of the project we documented the computer execution time 

required to estimate bicycle volumes for Seattle, Washington. Figure 3-15 shows that with each 

benchmark the execution time decreased. The original tool took over 22 hours, while the current 

tool takes 1/10th the amount of time or about 2 hours. Likewise, figure 3-16 shows how the 

improvements decreased the computer time required to estimate bicycle volumes throughout 

Moscow, Idaho. The improvements to the scripts are summarized in table 3-1 and described 

below.  

Figure 3-15 Improvements in computer execution time (hours) for Seattle 

27 



  

  

  

   

  

  

  

  

   

  

   

    

  

  

 

 

 

 

  

 

  

  

 

 

   

  

Figure 3-16 Improvements in computer execution time (minutes) for Mosco 

Table 3-1 Code Optimization Improvements 

Script Improvement 

Create Augmented Network New ArcGIS function 

Calculate Bicycling Stress IDs generated with augmented network 

Locate Origins and Destinations to the 

Network 

k-d tree algorithm, changed looping 

Calculate OD Centrality Python default dictionary, changed looping 

We made a significant change in “Create Augmented Network” that reduced that 

module´s execution time from 3 hours down to 20 minutes for Seattle. For Moscow the change 

made the execution time negligible (15 minutes to 1 minute). The change concerned how the 

algorithm draws the lines that that represent turn movements at intersections (See figure 2.2). In 

the original script the lines were drawn using ArcGIS´s draw editing. The new tool uses 

ArcGIS´s built in function called “XY to Line.” Thus instead of looping through each individual 

line, the script now draws all lines in one single process (it is not clear how the ArcGIS tool 

accomplishes this). 

The original script for “Calculate Bicycling Stress” had a very time consuming loop in 

the code to assign to every intersection link the bicycling stress associated with crossing a street. 

The original tool looped through every link to obtain the coordinates of the endpoints. Then it 

looped through every endpoint to determine which links were connected, and then it looped 

through every link again to determine whether links were crossing each other. This series of 

looping took a very long time. In the new tool, every link is given an ID during the creation of 
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the Augmented network and the links they cross are determined as well. Then, when calculating 

bicycling stress, the IDs are used. 

The script for “Locate Origins and Destinations to the Network” was very time intensive 

because it found which network node to be the nearest node to the centroid of an OD through an 

algorithm that looped over Euclidean distance between an OD and every node. For Seattle, this 

process would take about 20 minutes. The new technique takes less than 5 seconds. We now 

incorporate the k-d tree algorithm first developed by Maneewongvatana and Mount (1999). 

Furthermore, when using the original toolbox, the analyst needed to execute this script eight 

times, for origins and destinations for every combination of OD pair (residential to non-

residential, residential to residential, non-residential to residential, and non-residential to non-

residential). 

The new tool only does this process once and retains the information.  

Another significant change concerned the code to calculate OD centrality. The original 

tool was based on the algorithm by Brandes (2001). The authors of the Python code that we 

obtained from NetworkX assumed that the entire network would be searched, so before each 

loop of a source-to-all, they initialized an empty Python dictionary to represent the nodes of the 

entire network. However, since we constrain bicyclists to only travel 5 miles, we only need the 

nodes within that distance. Therefore, we were able to use an innovative Python technique called 

“default dictionaries” to populate only the nodes as they are searched. This minor change in the 

code (changing one line of code) saved about 2 hours of computation time for the Seattle 

network.      

3.6 Conclusion 

This chapter describes improvements to a GIS tool that engineers and planners can use to 

estimate bicycle exposure when conducting safety analyses. Indeed, the improvements achieved 

the goals of this PacTrans project to make the tool more user-friendly and decrease the 

computation time. The original tool consisted of eight individual scripts that required extensive 

intermediate data processing. The improved tool is now just one script. This change sacrificed 

tool flexibility by removing various options that the tool-user can no longer select; however, the 

tool is now significantly more user-friendly. 

The original tool took more than 22 hours to run (computer time only) for the bicycle 

network of Seattle, Washington. Consequently, the process of calibrating the tool (i.e., 

repeatedly running it and adjusting the output) could have taken a few days or even weeks to 

accomplish.  The new tool runs in a fraction of the time, just over 2 hours. Thus, calibration can 

be done within a single work day. The improvements documented in this report can provide 

guidance for practitioners who will use the tool and provide helpful information for future 

researchers who might continue to advance the underlying methods. 
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CHAPTER 4 DATA COLLECTION AND ANALYSES 

4.1 Data Collection for Portland 

This section documents the data collection and analysis process for building SPFs in the 

Portland metropolitan area. The data used in building SPFs included traffic volume data, 

STRAVA bicycle volumes, and six years of crash data (2009 to 2014). It should be noted that 

after the random sampling process and data collection process, engineers found that not enough 

crashes had happened in segments in Portland within the six-year period to build SPFs for 

segments, so engineers were only able to create an SPF for intersections. However, the 

procedure of building SPFs for segments is similar to that for intersections, so jurisdictions can 

follow the same process to establish SPFs for any site. 

4.1.1 Collect Annual Average Daily Traffic (AADT) 

AADT is one of two critical components of bicycle SPFs. The difficulty of collecting 

AADT is that not all roads have AADT available. Since crowdsourced STRAVA Metro data 

provide high resolution bicycle volume data for Portland, Oregon, the locations for the sample 

sites depended on where AADT was available. Permanent Automatic Traffic Recorder Stations 

(ATR) are the first choice for collecting AADT data. In this project, engineers used ODOT 

TransGIS to collect AADT and used those locations where the ATRs were located as the sample 

locations (more explanation will be presented later). Figure 4-1 shows the non-state (not state 

highway) locations in Portland. 

Figure 4-1 Non-state ATR locations in Portland, Oregon. 

One limitation of choosing ATRs for sample locations is that the locations may not 

perfectly represent all road situations in Portland. The ideal method is to choose those locations 

randomly from all roads and intersections; however, it is not practical to choose sites totally 

randomly because data are not available for every site. Holding to the“best available science” 
principle, engineers decided to choose intersections where ATRs were available. As shown in 
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Figure 4-1, non-state ATR locations in Portland, Oregon, were spread out evenly, so those 

locations could generally represent the population. Those ATRs are spread on the basis of road 

density and usage rates, and there are more ATRs at locations of high population density or 

higher functional roads. Thus the ATR locations could basically represent the population of 

Portland.  

However, because ATR locations are installed according to road usage and population 

density, another limitation was that there was no sample site for low AADT roads, e.g., local 

functional roads. Therefore, engineers chose some sample sites on those low usage roads to 

balance the bias. The way they were chosen will be discussed later.  

Ideally, all ATR locations would be used to collect data; however, some ATRs were 

located on the state highway ramps, where bicycles are not allowed to ride. Therefore, ATRs 

located on state highway ramps or that were highly influenced by (very close to) state highways 

were excluded from the samples. 

Some ATRs were close to each other, as shown in Figure 4-2. If that was the case, 

engineers chose only one or two of them to avoid cluster issues. Cluster issues are a data 

selection problem in spatial correlation in which the samples are spatially close, causing the 

characteristics and feature of the surrounding environment of samples to be similar. If many 

samples are selected in one cluster, the representation will be biased because of the over-

weighting of those samples. Again,  the sample selected cannot perfectly represent all 

populations, but the “best available science” idea was used to address the data availability issue. 

Figure 4-2 A cluster of ATRs close to each other. 
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4.1.2 Identify Segments 

Once an ATR has been chosen, the street on which the ATR is located is chosen as a 

segment sample, but the start and end points of the segment should be chosen carefully. The 

segment needs be homogeneous (American Association of State Highway and Transportation, 

2010); in other words, anything that can influence the consistency of data may be the breaking 

point of a segment. For instance, any change in the presence of a bike lane, the number of traffic 

lanes, the presence of a high population building or organization (e.g., schools), the presence of 

another arterial road crossing, etc., can change the AADT or AADB data significantly.  

32rd ST 

Figure 4-3 The segment chosen as a sample site based on ATR location. 

Figure 4-3 shows a segment chosen on the basis of an ATR location, which was broken 

at Glian St and E Burnside St because those streets are city arterials that could change traffic 

volumes significantly. Sometimes not only the presence of an arterial but also the presence of 

collector roads can influence traffic volumes or bike volumes greatly, so engineering judgment 

is needed to determine the relationship between the sample segment and the surrounding land-

use environment to decide whether to break a segment. 

4.1.3 Identify Intersections 

Similar to identifying segments, identifying intersections is based on the locations of 

ATRs. After an ATR has been chosen, the closest intersection whose minor road has ADT data 

available from the Portland Bureau of Transportation (Portland Bureau of Transportation, 2016) 

is chosen as an intersection sample. Figure 4-4 shows the same segment identified by an ATR 

site in figure 4-3, and the red circle highlights the ADT available for Church and Burnside roads. 

Either of the two roads can be the minor road of the intersection that an engineer will choose. 

The ADT can be converted to AADT by multiplying by a seasonal factor, which will be 
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addressed later. Therefore, the intersection will have AADT for both the major road and the 

minor road.  

32rd 

ST 

Figure 4-4 Traffic count data available for a site from PBOT, the city of Portland. 

4.1.4 Convert ADT to AADT 

Average Daily Traffic (ADT) is obtained from short-term traffic counts, and it is 

typically 72 hours of traffic collected on Tuesday to Thursday. Sometimes ADT can be obtained 

by 48-hour counts or at least 24-hour counts. In order to convert ADT to AADT the Seasonal 

Correction Factor (SF) and Axle Correction Factor are employed (Department of Transportation, 

2012). Weekly Seasonal Factor should be found from the local permanent count station. 

AADT = ADT × Weekly Seasonal Factor × Axle Correction Factor 

4.1.5 Obtain STRAVA Bicycle Counts 

The Oregon Department of Transportation (ODOT), collaborating with STRAVA, 

created an Oregon bicycle network map that aggregates all bicycle records on roads from the 

app to a GIS shapefile. ODOT purchased these data for research. This product provides 

information about bicycle counts for days, weeks or weekends, trip times, and some basic 

demographic information. Figure 4-5 shows the STRAVA count map.  

33 



  

  

   

  

  

 

 

 

  

 

  

 

  

 

  

Figure 4-5 STRAVA count map (STRAVA, 2016b). 

STRAVA data are obtained from ArcGIS® 10.2.2, which is widely used in research. 

Similar data collection was done in ODOT bicycle and pedestrian project SPR779, and since one 

of the authors of this project also participated in SPR779, the process is directly documented 

below: 

“The bike volume can be roughly represented via the STRAVA bike count, but the 

accuracy of representation is one limitation of the data, even though STRAVA Company has 

differentiated the commuter count and cyclist count. ODOT has been doing tests on STRAVA and 

the results show the STRAVA count can represent 1 percent of total bike volume without 

considering the difference between commuter and cyclist. However, the tests are based on a few 

locations, so the finding is not conclusive. Future work can focus on validating the 

representation of STRAVA, but we assume it can represent basic information of real bike volume 

in this project.  

One issue of STRAVA data in GIS is that there are more than one lines representing the 

same link at some segments. For example, figure X shows that there are three count links (in red) 

on a bridge in Portland Downtown area, and each of them has bike count 3473 bike trip/year, 

5264 bike trip/year, and 2983 bike trip/year from top to bottom, respectively. This issue may 

come from the bike count assignment process, since STRAVA built buffers around GPS signal to 

assign bike count to segments. Thus we manually checked all of our sample and only used the 

link with highest bike count to address the problem.” (Monsere, Wang, Wang, & Chen, 2016) 
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Figure 4-6 Multiple bike links on the same segments in the Portland downtown area (Monsere 

et al., 2016). 

4.1.6 Obtain Crash Data 

Crash data for all Oregon were provided by ODOT from 2009 to 2014 (ODOT, 2016). 

The shapefile was separated for each year, then engineers used ArcGIS® to aggregate them 

together. In this project, crash severity was not considered; instead the crash frequency, i.e., the 

number of crashes, was collected. Ideally, the crash for and intersection was assigned to the 

interaction by using a 250-ft buffer, but if the distance between two intersections was shorter 

than 250 feet, then engineers checked the crash manually to assign the data. In other words, a 

250-ft radius buffer was built to define each intersection midpoint and crashes that happened in 

the buffer were counted as happening at the intersection. However, the segments between 

intersections in Portland are typically shorter than segments in other cities, and many of them 

are shorter than 250 feet. Therefore, it was necessary for engineers to assign crash data to 

intersections by hand. Crashes that did not happen at intersections were assigned to segments. 

ATR sites on bridges were not counted in the sample because of the complexity of 

bridges. For example, some bridges have ramps for traffic only, which would cause inaccuracy 

in the AADT data. In addition, most bridges have dedicated bicycle paths where motorist-

bicycle crashes would be unlikely to happen. 

4.2 Data Collection for Seattle. 

Twelve intersections were selected as the representative group for Seattle due to data 

availability. Bicycle crash data in 2009 to 2014, 2014 average annual daily traffic (AADT) 

volume data, and 2014 average annual daily bicycle (AADB) volume data for each intersection 

were collected. The following sections provide the data collection methods and the detailed data 

description for each kind of data set. 
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4.2.1 Intersection Bicycle Crashes 

Generally, bicycle crash data were collected on the basis of reported data, such as from 

policy reports, hospitals, and insurance companies. Unfortunately, the quality of reported crash 

data is weakened by underreporting; for example, policy reports often underreport single-bicycle 

crashes and crashes that do not involve in insurance indemnity (Juhra, 2012). Crowdsourcing is 

a novel method for collecting bicycle crash data, deploying Internet applications to collect self-

reported data through the collaboration of participants. Since self-reported data have much more 

selection bias than traditionally reported data (Roberts, 1995), scholars have suggested that 

crowdsourced data are not able to substitute for traditionally reported data (Jestico, 2016). 

The bicycle crash data set used in this project was collected from police reports of 

bicycle collisions. Since the bicycle safety performance function was developed only for 

intersections, an intersection bicycle crash data set was selected from the original data set. 

Figure 4-7 shows the spatial distribution of 2014 bicycle crash data in Seattle. The detailed data 

set description is introduced in the next section. 

Figure 4-7 2014 bicycle crash spatial distribution in Seattle (Source: SDOT, 2015) 

4.2.2 AADT 

AADT is the total volume of vehicle traffic of a road for a year divided by 365 days, 

which is one of the exposure variables of the safety performance function. The AADT data from 

the Seattle area were calculated based on traffic count data, which were measured for 20 

controlled count locations, 164 screen line count locations, and 111 additional count locations 
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(SDOT, 2015). The intersection AADT data were calculated by summing up traffic flow data 

form major roads and minor roads. Figure 4-8 and figure 4-9 show the traffic count locations 

and 2014 average annual daily traffic in Seattle. 

Figure 4-8 Traffic count locations (Source: SDOT, 2014) 
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Figure 4-9 2014 average annual daily traffic in Seattle (SDOT, 2015) 

4.2.3 AADB 

AADB data were collected from a Seattle Department of Transportation (SDOT) open 

data source. SDOT deployed three bicycle counting methods to calculate citywide bicycle 

volumes, automated permanent bicycle counts, multiday short counts, and spot bicycle counts 

(SDOT, 2015). Automated permanent bicycle counting has been conducted at 12 locations in 

Seattle since the end of 2013. The type, variety, and spatial diversity of the locations enable 

them to be good representatives for characterizing the features of bicycle volumes in Seattle. 

Figure 4-10 shows the locations that were equipped with automated permanent bicycle counters. 

The hourly, daily, weather, seasonal factors, and other influencing factors of bicycle volume 

could be demonstrated by permanent counting results, which enabled us to create daily volume 

factors. Then, the AADB was calculated on the basis of multiday short counts and spot bicycle 

counts (SDOT, 2014). Figure 4-11 shows 2014 calculated average annual daily bicycle volumes 

in Seattle. 
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Figure 4-10 Automated permanent bicycle counting locations (SDOT, 2014) 

Figure 4-11 2014 calculated average daily bicycle volume in Seattle (SDOT, 2015) 
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4.3 Data Description and Analysis for Portland Data 

In this section, details of data that were collected for intersections in Portland will be 

discussed. Data included intersection locations, crash data, AADT, and bicycle count data.  

4.3.1 Crash Data 

Crashes that happened at intersections or related to intersections were collected and 

assigned to intersections. Previous studies collected intersection crash data by a buffer and used 

the buffer to decide whether crashes belonged to an intersection; however, in this project, 

engineers found that this method was not accurate because of the short distances between 

intersections in the Portland metropolitan area. In other words, because intersections are too 

close to each other, engineers could not assign crash data spatially. So each crash possibly 

related to an intersection was reviewed by engineers to decide its location. Figure 4-12 shows 

the intersection sample locations with crashes that happened from 2009 to 2014.  

Figure 4-12 Intersection sample with crash counts from 2009 to 2014. 

Even though the intersection samples in figure 4-12 were not totally random, the spread 

of intersection sample locations can generally represent the whole population in the Portland 

metropolitan area. More justification can be found in the Data Collection section.  

As shown in figure 4-13, the crash counts for all intersection samples were fewer than 

four, indicating that fewer bicycle crashes than traffic crashes happened every year.  From 2009 
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to 2014, the entire Oregon bicycle crash number was around 800, and there were certainly fewer 

in the Portland area. Another reason for the fewer crashes shown out is under-reporting. Most 

the bicycles are not covered by insurance, so a lot of bicycle crashes are not reported to either an 

insurance company or a police department if the crash is not severe. In other words, many 

PropertyDamage-Only or single bicyclist crashes have not been reported and so remain 

unknown. 
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2009-2014 Intersection Crash Frequency 

Figure 4-13 Crash frequency for each intersection sample. 

In many intersections, no crash happened between 2009 and 2014, which agrees with the 

over-dispersion feature of bicycle crashes observed by others. Other studies’ observations can be 
found in the Literature Review. Figure 4-13 shows the distribution of crash frequencies for all 

samples. The figure shows that about half of the intersections sampled had 0 crashes during the 

six years, and as the crash frequency increased, the intersection number decreased significantly. 

In other words, the majority of intersections had fewer crashes from 2009 to 2014, which 

verifies the over-dispersion characteristic of crash data. The crash frequency has a mean of 0.88 

crashes/intersections and a variance of 1.25 crashes. The variance is larger than the mean, 

indicating over-dispersion.  

Figure 4-14 shows the total number of crashes for each year for all intersections. The 

average crash rate is about 7 or 8 crashes/year for all 50 sites, with a peak of 12 crashes in 2012.  
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Crash Count for Each Year 
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Figure 4-14 Crash count by year 

Figure 4-15 summarizes the functional classifications of the roads where the crashes 

happened. The functional classifications were collected from crash reports in the ODOT crash 

data set. The functional classifications were based on which road the crashing bicycle was riding 

on. For example, if a bicycle was on an urban minor arterial at an intersection and it crashed 

with a car from the perpendicular urban collector leg, then the crash was defined as happening 

on the urban minor arterial at the intersection. As shown in the figure, the majority of crashes 

happened on arterials. This phenomenon may result from two reasons: 1) there are many more 

bicycles on higher functional classification roads; 2) data selection bias; in other words, because 

the selected data sites were near ATR locations that normally were selected to build on higher 

functional classification roads, most intersections had at least two legs with an arterial functional 

classification. 
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Figure 4-15 The functional classifications of intersection leg where the crashes happened  
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Figure 4-16 shows the collision types of all crashes that happened in those intersections. 

Most of crashes happened during turning movements, a situation similar to traffic collisions at 

intersections. Surprisingly, the least frequent collision type is rear-end collision. One reasonable 

hypothesis is that bicycles typically move more slowly than traffic and take less distance to stop, 

so fewer rear-end crashes happen. 
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Collision Type 

Collision Type Summary 

Figure 4-16 Collision types of crashes 

Crash severity was not addressed by this project, but it is worth summarizing. Figure 4-

17 shows the crash severity types of all crashes that happened at the intersections from 2009 to 

2014. Most of the crashes were non-fatal injury, with very few property damage only (PDO). 

However, in Oregon, typically about half of traffic crashes are PDO. The demographic 

difference may be the result of less protection for bicyclists. In other words, drivers are typically 

protected by the vehicle frame but not bicyclists, which causes bicyclists to be more vulnerable 

than vehicle drivers. In addition, under-reporting may be an issue. Typically, bicycles have no 

insurance, so bicyclists normally will not report an accidents if they have very little loss. 
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Figure 4-17 Crash severity type for six years of crashes at intersections. 

Figure 4-18 and figure 4-19 summarize the weather and road surface conditions related 

to the crashes, respectively. Most crashes happened in better weather and surface conditions. 

There may be three reasons for that: 1) fewer bad weather or surface days than good weather 

days; in other words, a larger number of days in the year have good weather, such as clear or 

cloudy; 2) drivers and bicyclists pay more attention and are more careful when driving and 

riding in bad weather; 3) there are more traffic and bicycle volumes in good weather and on 

good surface conditions. Bicyclists, both commuters and recreational cyclists, typically choose 

clear or cloudy weather instead of riding in the rain. The weather can be a significant reason for 

changes in bicycle volumes, so certainly there are fewer bicycles crashes when there are fewer 

bicycles on the road. 
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Figure 4-18 Weather conditions of the crashes at intersections. 
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Figure 4-19 Road surface conditions of the crashes at intersections. 

Figure 4-20 shows the lighting conditions for crashes that happened at intersections. It 

shows that most crashes happened in daylight. This phenomenon may have reasons similar to 

those for weather and surface conditions: 1) most bicycles and traffic move in the day instead of 

at night; lighting is a very important factor that can influence bicyclists choosing riding time, 

since bicycles are much less visible than vehicles; 2) bicyclsts and riders may be more careful at 

night or under bad lighting conditions. 
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Figure 4-20 Lighting conditions of crashes at intersections. 

Figure 4-21 shows the control type of the intersections where each crash happened. Most 

of the crashes happened at intersections with a traffic signal. This may result from two reasons: 

1) drivers and bicycles move less carefully at intersections with traffic signals; for example, 

drivers may speed up while the traffic light changes from green to yellow; 2) data selection bias: 

many of the intersection sites that were selected were on arterial roads where traffic signals are 

typically used. 
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Figure 4-21 Intersection control types associated with crashes. 

Table 4-1 shows the causes of crashes happening at intersections. Most crashes resulted 

from no yield to right of way, but the report doesn’t show whether it was because of the driver 

or cyclist. However, it can logically be inferred from the fact that most collision types were 

“Turning Movement” that right-turning traffic didn’t yield to the straight-moving bicycles. It is 

very normal the drivers may ignore straight-moving bicycle for two reasons: 1) bicycles are less 

visible due to less body volume and less reflective surface; 2) drivers do not check their mirrors 

for bicycles. It is normal for drivers to think there is no bicycle coming on the right if there is no 

visible bike lane. Many drivers are not used to checking their mirror for bicycles when turning 

right in places with fewer bicycles. 
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Table 4-1 The causes of crashes at intersections 

Crash Cause Summary Count 

Careless Driving (per PAR) 1 

Did not yield right-of-way 29 

Disregarded R-A-G traffic 

signal. 

6 

Followed too closely 2 

Made improper turn 2 

Not Visible 1 

Other improper driving 1 

Passed stop sign or red flasher 1 

Unknown 1 

4.3.2 AADT Data 

All intersection AADT data collected in this project are summarized In Figure 4-22. . In 

this data set, some of the minor roads did not have AADT from permanent count stations, so 

ADT was collected. Ideally, the ADT should be converted to AADT, but the seasonal table 

could not be found, so ADT was used in the modeling process. Furthermore, the assumption that 

ADT almost equals AADT was reasonable at this project’s scale. 
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Figure 4-22 (a) Intersection major road AADT scatter and histogram graphs 

The scatter graph shows that the major roads’ AADTs are within the range of 0 and 

30,000 traffic count, but they are not evenly spread out within this range. The histogram shows 

fewer samples when the AADT increases, and the majority of the major roads at interections 

have AADT of less than 20,000. 
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Figure 4-22 (b), Intersection minor road AADT scatter and histogram graphs. 

Figure 4-22 (b) demonstrates the scatter graph and histogram graph AADTs from 

intersections with minor roads. In the histogram, the AADT decreases sharply from 5000 to 

10,000. In other words, the range is similar to that of major roads, but the majority of them have 

an AADT of less than 10,000. This may come from the lower functional classification of minor 

roads. 
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Figure 4-23 Intersection total AADT scatter and histogram graphs 

In this project, engineers used both minor road and major road AADT or ADT to 

represent intersection traffic counts. Figure 4-23 shows the total traffic counts of adding major 

AADT and minor AADT to ADT. The histogram shows that AADTs peaked around 15,000 and 

have a right-skewed distribution. In other words, the major road AADTs have less than 25,000. 
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4.3.3 Bicycle Count Data 

This section summarizes STRAVA bicycle count data for all intersections, both major 

and minor roads. The STRAVA counts were organized by year originally, so these data describe 

all-year counts. Average daily STRAVA counts can be obtained by dividing the yearly count by 

365. However, this project used original all-year STRAVA counts as the model variable. The 

only difference between using yearly counts and daily counts is the number of coefficients for 

STRAVA data, but that did not significantly the variable. Transportation agencies can use either 

average daily STRAVA data or yearly STRAVA data. 

Figure 4-24 Intersection major road STRAVA scatter and histogram graphs. 

The scatter graph and histogram graph in figure 4-24 both illustrate the range and 

distribution of major road STRAVA data. Most of those data were within the range of 0 to 4,000 

bicycles, with high concentrations on less than 2,000 bicycles. In other words, the majority of 
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the sampled intersections had STRAVA data on a small scale. This is because 1) there are fewer 

bicycle users than vehicle users; 2) STRAVA data only represent a small proportion of all 

bicycles. 

Figure 4-25 Intersection minor road STRAVA scatter and histogram graphs. 

The majority of samples from smaller road STRAVA counts were similar to those from major 

road STRAVA counts. However, unlike STRAVA counts on major roads, almost all minor road 

STRAVA counts were within 1,000. This may be a result of the lower functional classification 

of minor roads. 
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Figure 4-26 Intersection total STRAVA scatter and histogram graphs. 

In this project, engineers used both minor road and major road STRAVA counts to 

represent intersection bicycle counts. Figure 4-26 shows the total bicycle counts, including both 

major and minor road STRAVA counts. The histogram shows the shape decreasing with an 

increase in the number on the X-axis, indicating that fewer intersections have larger STRAVA 

counts. Most intersections had STRAVA counts within the range of 0 to 4,000 bicycles. 

4.4 Data Description and Analysis for Seattle 

Table 4-2 summarizes data from the Seattle area that were used in this project. We 

collected six years of bicycle crash data from 2009 to 2014, and AADT and AADB data from 

2014. The following sections describe the detailed features, respectively, of bicycle crash, 

AADT, and AADB. 
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Table 4-2 Data summary of Seattle data 

Bicycle Crash 

Location AADB (2014) AADT (2014) (2009 ~ 2014) 

Montlake Bridge 900 57400 

Gilman Ave W NB n/o W Bertona 470 16200 

Mercer St and Aurora Ave N 290 118700 

3rd Ave s/o Madison NB 210 22600 

Pike St w/o Terry Ave 460 14600 

2nd Ave PBL s/o Madison St 370 30000 

NE 125th St  e/o 12th Ave NE 200 24800 

12th Ave NE n/o NE 50th St 100 24500 

12th Ave S s/o S Weller St NB 130 26200 

S Jackson Btwn 23rd and 25th 160 11300 

Fremont Bridge 2760 33900 

S Spokane St at 11th Ave S 780 26600 

Total 6830 406800 

0 

0 

0 

0 

1 

1 

1 

2 

2 

3 

4 

7 

21 

4.4.1 Bicycle Crash Data 

In all, approximately 1950 bicycle crashes occurred in Seattle from 2009 to 2014, and 21 

bicycle crashes occurred at the 12 selected intersections. In comparison to motor vehicle crashes, 

the number of bicycle crashes was much lower. Figure 4-27 and figure 4-28 show the bicycle 

crash counts for each year in the study areas and in Seattle. Obviously, they have the same 

pattern of variation trend from 2009 to 2013. Namely, crashes increased from 2009 to 2013, 

reached a peak in 2013, and then dramatically dropped in 2014. The increasing trend of bicycle 

crashes from 2009 to 2013 was caused by growing ridership and population, and the rapid drop 

in 2014 was caused by the implementation of a bicycle safety management project that started at 

the end of 2013 (SDOT, 2015). 
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Figure 4-27 Bicycle crash countd for each year in study area 

Figure 4-28 Bicycle crash countd for each year in Deattle (Source: SDOT, 2015) 

Figure 4-29 shows the crash frequency in the study areas. More than half of the selected 

intersections had no crash or only had one crash within the intersection area. The main reason is 

the over-dispersion feature of bicycle crash data (Kim, 2006). Over-dispersion is the 

characteristic by which variance is larger than the mean value of the data set (Gardner, 1995). 

Seen from the statistics in this data set, the mean was 1.75 and the variance was 4.39, which 

verifies the over-dispersion feature of the bicycle crash data set.  
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Figure 4-29 Crash frequency summary 

Figure 4-30 shows a summary of the collision types from the bicycle crash data related to 

the study intersections. According to the left figure, most crashes were front end at angle, and 

rear-end crashes and left-side sideswipe crashes were, respectively, responsible for 10 percent of 

all crashes. For motorized vehicle crashes, rear-end crashes were the most common (Wang, 

2006); however, that is different from the data sample. The main reason is that the speed of 

bicycles is much lower than motorized vehicle speeds, so bicycles can stop more easily when 

accidents occur. The right figure shows that 67 percent of all crashes were caused by cyclists 

striking motorized vehicles, and 33 percent of were caused by motorized vehicles striking 

cyclists. 

Figure 4-30 Collision type summary 
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Figure 4-31 summarizes the crash injury severity from the data sample. About 86 percent 

of all crashes were involved in bodily injuries, and only 14 percent of them were property 

damage only collisions. The composition is caused by the underreporting of bicycle crashes. 

Since the crash data set was police-reported, crashes that did not involve bodily injury and 

insurance indemnity would not be reported to police department (Juhra, 2012). Therefore, 

reports of property damage only collisions were a small portion of total crashes, and the rest of 

the crashes were almost all bodily injury involved. 

Figure 4-31 Collision injury severity summary 

Figure 4-32 depicts the composition of road conditions in the crash data sample and light 

conditions. As seen in the right figure, 90 percent of crashes occurred under dry road conditions, 

and only 10 percent happened under wet road conditions. Intuitively, wet road conditions would 

more frequently lead to crashes; however, the data sample revealed the opposite circumstance. 

The potential reason for this phenomenon is that people are more willing to choose bikes as a 

commute travel mode when road conditions are dry, and cycling demand increases when road is 

in good condition (Thomas, 2009). On the other thand, fewer people travel by bicycle when the 

road is wet. For the light condition summary, most crashes happened in daylight conditions, and 

only one-fourth happened on dark streets. The reason is that the demand for bicycling in 

daylight conditions is higher than demand in street light conditions (Spencer, 2013). 
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Figure 4-32 Road condition and light condition summary 

Figure 4-33 summarizes the weather conditions for the data sample. About 81 percent of 

crashes happened in clear or partly cloudy weather, and 10 percent of crashes happened, 

respectively, on overcast days and rainy days. As mentioned above, road conditions and light 

conditions impact bicycle travelling demand, and weather conditions also significantly affect 

bicycling demand (Rose, 2011). Therefore, even though the total number of bicycle crashes for 

clear days is higher than the number for overcast and rainy days, the crash rate is less for clear or 

partly cloudy days. 

Figure 4-33 Weather condition summary 
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4.4.2 AADT and AADB 

This section summarizes the features of the AADT and AADB data for the Seattle area 

that were used in this project. Figure 4-34 shows the distribution of AADT. The AADT for the 

study area ranged from 11,300 per day to 118,700 per day, and the AADT for most of the 

intersections was between 20,000 per day and 30,000 per day. The mean value was 33,900, with 

a standard deviation of 29,180. 

Figure 4-34 Average annual daily traffic volume distribution 

Figure 4-35 shows the distribution of AADB data in 2014. Almost all the intersections in 

the study area had AADB of below 1000 per day, except for the Fremont Bridge, which had 

2760 per day in 2014. The most frequent level was between 0 and 200. The mean value was 569, 

with a standard deviation of 734.   
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Figure 4-35 Average annual daily bicycle volume distribution 

Figure 4-36 shows a preliminary analysis of the relationship among AADT, AADB, and 

bicycle crashes. Even though the small sample size and the simple linear relationship might not 

support a finding of the true relationships among them, the basic trend still might be revealed. 

Figure 4-36 shows the relationship between AADT and AADB. Intuitively, AADT and AADB 

at the same intersection should have some kind of relationship, for example, some intersections 

that are responsible for large traffic volumes would not have considerable bicycle volumes 

(Landis, 1996). However, according to the flat line in figure 4-36, AADT was barely related to 

AADB in the study area, with a correlation of 0.049. The probably reason for that is that the 

sample size was too small to reveal the true relationship between AADT and AADB. 
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Figure 4-36 Scatter plot of AADT vs AADB 

Figure 4-37 shows the relationship between AADT and bicycle crashes. As seen from 

the scatter plot, there was a weak negative relationship between AADT and bicycle crashes in 

study area, with a correlation of -0.261. The negative sign indicates that bicycle crashes decrease 

when AADT increases. The potential reason for that is that the geometric design of the 

intersections that are responsible for considerable traffic volumes is probably not suitable for 

bicycle travelling, such as high traffic speed limits (Pucher, 2010).  

Figure 4-38 depicts the relationship of AADB and bicycle crashes. As seen from the 

figure, the line shows a positive relationship between AADB and bicycle crashes, with a 

correlation of 0.411. The positive relationship indicates that bicycle crashes would increase 

when AADB increases. 

Figure 4-37 Scatter plot of AADT vs crashes 
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AADB 

Figure 4-38 Scatter plot of AADB vs crashes 
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CHAPTER 5 METHODOLOGY  

This chapter documents the process of building a jurisdiction bicycle SPF using 

crowdsourced data. Then different methods that were conducted in the modeling process are 

documented, including the negative binomial regression model (NBRM), Poisson regression 

model (PRM), zero-inflated negative binomial regression model, and other hypothesis tests.  

5.1 Procedure for Building the SPF Using Crowdsourced Data 

The steps of using crowdsourced data to build the SPF was partly different from the steps 

for establishing an SPF from typical data described by the Federal Highway Administration 

(2013). The steps were adopted and conducted as described below: 

Step 1: Determine the use of the SPF and facility type 

Engineers need to identify the use and facility type of the SPF before other steps. 

Depending on the purpose for the SPF the project scale will be different. The scale difference 

will influence the following steps, labor requirements, and time requirements. For example, if 

engineers decide to focus on building a project-level intersection SPF, then the data collection 

and other following steps will be concentrated in the project area for the intersection. If a 

statewide network screen is the goal, then the data should be randomly collected at the statewide 

level. The uses of the SPF may include but not be limited to network screening, project-level 

prediction, drive CMF, before-after evaluation using the EB method, etc. The facility types may 

include but not limited to intersections, segments of non-highways, highway segments, ramps, 

etc. Specifically, most bicycle projects will not include freeways as target facilities because of 

fewer bicycles on highways and the illegality of riding on freeways. 

Step 2: Identify the necessary data  

Depending on the uses of the SPF and facility types, the required data will be different. 

The differences may include sample size and the corresponding data set. Guidance on the 

minimum sample size can be found in the SPF Decision Guide (Srinivasan et al., 2013). For our 

project purposes, the effort requirement was larger than “project level” but smaller than the 

statewide level. In other words, the sample needed to include more than 50 sites, with at least 

100 crashes per year for a total group and three years of data. For example, a statewide SPF will 

require a much larger data set than a local, project-level SPF. However, in some projects, 

because of labor and time limitations, engineers can slightly change the original requirements to 

be practical. For example, because of too fewbicycle crashes, in this project, engineers could not 

meet the 100 crashes per year requirement in either Portland or in Seattle if the samples were 

chosen randomly, since the total crash number per year for all of Oregon was about 800. 

Step 3: Identify the corresponding crowdsourced data 

After determining necessary data, engineers need to identify corresponding 

crowdsourced data. This step may be the critical and most difficult step, since crowdsourced 
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data are the foundation of this SPF. Engineers may need to use proper judgment with a short-

term prediction of what the project would be if a certain type of crowdsourced data were chosen. 

Depending on project scale, sample size, and data set requirements, specific crowdsourced data 

need to be found. Crowdsourced data can be retrieved from an online open source, provided by 

DOTs, purchased from an agency, or adopted from another project. The data should meet the 

requirements of sample size and facility type. For example, if the project is to build a statewide 

intersection SPF, then the crowdsourced data should be able to represent all intersections for the 

state. In this project, the scale focused on two cities, so STRAVA data were chosen for Portland 

bicycle count since they could represent all city situations. The representation will be discussed 

later. Another main reason for using STRAVA data was that ODOT had purchased STRAVA 

data for 2014. However, because no STRAVA data were available for Seattle for this project, 

engineers decided to use typical count data. In this way, non-crowdsourced data were compared 

to crowdsourced data at the end. 

Step 4: Verify the crowdsourced data 

The most important step in using a crowdsourced data is to justifying it. In other words, 

the crowdsourced data chosen by engineers should be verified for use, including their 

representation and reliability. Crowdsourced data should be able to represent the population in a 

project, and the source should be reliable enough to meet engineering requirements. For 

example, an agency properly collecting crowdsourced data is more reliable than data retrieved 

from online new media without authors. In this project, STRAVA data were chosen because of 

their high reliability and fairly good representation. Justifying the representation is necessary 

since most crowdsourced data can only represent a small proportion of users. User types should 

be clarified while verifying the representation. Normally, bicyclists can be divided into two large 

types: recreational cyclists and commuters. For example, in this project, only subpopulation of 

recreational cyclists and commuters were using the STRAVA application, so the data from them 

could only represent those users instead of the entire population. Thus the way that the 

STRAVA data represented the entire population was verified; more detail can be found in the 

data collection description. Generally, the STRAVA data can represent 1 percent of total users 

in Oregon.  

Step 5: Prepare and clean up the crowdsourced data 

Engineers must decide which details from the data should be used to build the SPF. 

Since crowdsourced data will include a lot of information, unnecessary data detail should be 

deleted. For instance, the STRAVA bicycle data contained a lot of detail information about each 

user that would not contribute toward this project’s purpose. For basic SPF, traffic counts, 

bicycle counts, and crash data should be included. Some statistical plotting, such as scatter plots, 

can be used to determine outliers and human error. 
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Step 6: Data analysis 

Engineers develop a sense of how the data look in order to make decisions. Data analysis 

is accomplished mainly though statistical plotting and analyzing. Mean, variance, scatter plots, 

histogram graphs, etc. are ways to analyze collected data. An example can be found in the data 

description for in this project. 

Step 7: Develop the SPF for basic conditions 

The first step of establishing the SPF regression is the basic SPF. The basic SPF for 

bicycles includes traffic counts and bicycle counts as independent variables and crash frequency 

as the dependent variable. The basic SPF for traffic at intersections is: 

Y = 𝑒𝑎 × (𝐴𝐴𝐷𝑇𝑚𝑖𝑛𝑜𝑟)b × (𝐴𝐴𝐷𝑇𝑚𝑎𝑗𝑜𝑟)𝑐 

where 

Y: crash frequency per year 

a: estimation of coefficient of exponent  

b: estimation of coefficient of AADT on minor road 

c: estimation of coefficient of AADT on major road. 

According to Nordback et al., (2014) the bicycle SPF for intersections looks similar to 

that for traffic but includes AADB: 

𝐶 = 𝑒𝑎(𝐴𝐴𝐷𝑇)𝑏(𝐴𝐴𝐷𝐵)𝑐 

where 

C: number of intersection motorist-cyclist collisions during the study period;  

AADT: the annual average daily motorized traffic passing through the intersection; 

AADB is the annual average daily bicycle traffic passing through the intersection;  

a b c: the exponents estimated by the model. 

Model coefficients can be estimated in statistical software, such as R® programming or 

Microsoft Excel®.  

Step 8: Develop CMFs for specific treatments 

A crash modification factor (CMF) is a multiplicative factor used to compute the 

expected number of crashes after a given countermeasure has been implemented at a specific 

site (Crash Modification Factor Clearinghouse, n.d.). As an important component in SPFs, 

CMFs address specific and detailed conditions of SPFs. For instance, if a basic SPF was built on 

the basis of a two-leg intersection, then if the target site had a five-leg intersection, the 

prediction of SPF would change because the five legs would influence crash occurrence. This 

difference can be addressed with a CMF. This process was not included in the case for this 

project. 
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Step 9: SPF interpretation and discussion 

Interpretation of coefficients, understanding the dependent and independent variables, 

and how to interpret log transformation and exponents etc. are the main components for building 

basic SPFs. The model may be interpreted within local jurisdiction and the constrains of the 

scale of the data unless the representation and extrapolation at a larger scale can be justified. For 

example, the SPF built on STRAVA data should be only interpreted for STRAVA users; 

however, because the representation for the whole population was verified in Portland, the 

discussion can refer to Portland bicyclists.  

Step 10: Document establishment of the SPF 

According to the Federal Highway Administration, (2013) documentation should include 

but not limited to the following: 

• Crash type(s)/severity(s) for which the SPF was estimated  

• Total number of crashes (by type and severity) used in the estimation  

• Purpose of the SPF 

• State(s)/county(s)/city(s) that were used  

• Facility type 

• Number of years used in the estimation of SPF 

• Number of units (segments, intersections, ramps)  

• Minimum, maximum, and average length of segments  

• Minimum, maximum, and average AADT 

• Minimum, maximum, and average values for key explanatory variables  

• Coefficient estimates of the SPF 

• Standard errors of the coefficient estimates  

• Goodness of fit statistics  

• Discussion of potential biases or pitfalls. 

Depending on the project scale and purpose, engineers can adopt the documentation 

process for their uses. The main purpose of documentation is to help others and the engineers 

themselves to recall and repeat the process as accurately as possible. 

5.2 Statistic Regression 

Many statistical regressions can be used to describe the count distribution, but success in 

analyzing traffic counts and bicycle counts seems rare. Since Nordback et al., (2014) used the 

negative binomial regression model (NBRM) successfully in Boulder, Colorado, this project 

mainly employed this model for the Portland and Seattle cases. However, other models should 
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be tested if NBRM is not significant, including zero-inflated negative binomial regression, 

Poisson regression, etc. 

5.2.1 Negative Binomial Regression Model 

The negative binomial regression model is a popular generalization of the Poisson 

regression model since it does not follow the features of equality of mean and variance (Hilbe, 

2011). Previously, bicycle crash data proved to be over-dispersed (Ladron, 2004), which is 

characterized by sample variance that is larger than the sample mean. Therefore, the negative 

binomial regression model is more suitable for bicycle safety performance function 

development.  According to Long, (1997), the NBRM can be used to address data with over-

dispersion characteristics, which the Poisson regression model (PRM) cannot fit. The details of 

how the NBRM can address over-dispersion can be found in Long’s book but are not included 

here. Poisson distribution has one important property of equal-dispersion (Long, 1997): 

Var(y) = E(y) = u 

where: 

var: variance  u: the rate that number of times an event has occurred per site during a period. 

Long (1997) said that the PRM can barely fit in practice because within major 

applications the condition variance is larger then the condition mean. Gourieroux et al., (1984) 

mentioned that in the situation that the mean is correct but with over-dispersion, then estimates 

from PRM are consistent but not efficient. In addition, the standard errors from the PRM will be 

biased downward, which can result in spuriously large z test values (Cameron & Trivedi, 1986), 

and that will mislead interpretation and judgment of fitness of the model. In other words, over-

dispersion may cause bias and inefficiency in the modeling process when PRM is used for 

bicycle and traffic count data that have the property of over-dispersion. The over-dispersion of 

the data in this project was described in the data collection and description section.  

The negative binominal model handles over-dispersion in the data sample by introducing 

a stochastic component to the log-linear Poisson mean function relationship (Hilbe, 2011). The 

basic model specification is given by the following equation: 

ln 𝑢𝑖 = 𝜀 + ∑ 𝑋𝑖𝛽𝑛 

where 𝑢𝑖is the expected value of the response variable, which is the number of bicycle 

crashes at intersection 𝑖; 

𝜀 is the random error term that aims to deal with over-dispersion in the data sample; 

𝑋𝑖is the independent variable that is the AADT and AADB at intersection 𝑖; 

𝛽𝑛 is the estimated coefficient of each independent variable. 
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The model assumes the response of the variable follows the negative binominal 

probability distribution that is given by the equation below: 

Γ(𝑦𝑖 + 𝜐𝑖) 𝜐𝑖 𝜐𝑖 𝜇𝑖 𝑦𝑖 

𝑃(𝑦𝑖|𝑋𝑖) = 

𝑦 ! Γ(𝜐𝑖) (𝜐𝑖 + 𝜇𝑖) 
𝑖 

(𝜐𝑖 + 𝜇𝑖) 

where Γ is the gamma distribution function; 

𝜐𝑖is the gamma distribution parameter divided by the dispersion parameter; 

𝑦𝑖 is the expected value of the response variable. 

The variance and the standard deviation of the the response variable are given by: 

𝜇𝑖2 

𝑉𝑎𝑟(𝑦𝑖|𝑋𝑖) = 𝜇𝑖+ 
𝜐𝑖 

𝜇𝑖 
2 

𝜎𝑖 = √𝜇𝑖 + 

𝜐𝑖 

5.2.2 Poisson Model 

Poisson regression is a member of the class of models known as generalized linear 

models (GLM), which is the standard method used to analyze count data (Cameron, 2013). The 

model assumes the response variable has a Poisson distribution that is characterized by the 

equality of mean and variance (Zou, 2004). The basic model specification is given below: 
𝑛 

log(𝜇) = 𝛽0 + ∑ 𝛽𝑖𝑋𝑖 

𝑖=1 

where 𝜇 is the expected value of the response variable, in this project, the expected number of 

bicycle crashes for a given average annual daily traffic and bicycle volume at intersection 𝑖; 

𝑋𝑖 are the independent variables of group 𝑖, in this project, traffic volume and bicycle volume; 

𝛽𝑖 is the estimated coefficient of independent variable 𝑋𝑖. 

The Poisson probability distribution is given by: 

𝜆𝑦𝑖 

𝑃(𝑦𝑖|𝑥𝑖) = 𝑒−𝜆 

𝑦𝑖! 

where 𝜆 is the sample mean and variance; 

𝑥𝑖 is the given independent variable; 
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𝑦𝑖 is the number of bicycle crash at intersection 𝑖. 

5.2.3 Zero-Inflated Negative Binomial Model 

By the observation that some intersections in the study area had zero bicycle crashes 

during the study periods, the bicycle crash generation process might differ for the intersections 

that had zero bicycle crashes and the intersections that had plenty of bicycle crashes. The zero-

inflated negative binomial model is not only able to handle over-dispersion in the data sample 

but can also provide an effective way to model the excess zeros (Lambert, 1992). The model 

assumes that there are two possible data generation processes for each data point. 

𝜑𝑖 𝑦𝑖 ~ {𝑔(𝑦𝑖 | 𝑋𝑖)0 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑤𝑖𝑡ℎ 

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝜑𝑖 

where 𝑦𝑖 is the expected value of the response variable, which is the number of bicycle crashes 

at intersection 𝑖. 

In this case, for each intersection 𝑖, there are two bicycle crash generation processes. One 

is responsible for generating zero bicycle crashes with probability 𝜑𝑖 and another one is in 

charge of generating bicycle crashes from the negative binomial distribution with probability 1 

− 𝜑𝑖. 

The probability of {𝑌𝑖 = 𝑦𝑖| 𝑋𝑖} is given by following equations.  

(𝑌𝑖 = 𝑦𝑖|𝑋𝑖, 𝑍𝑖) = { ( 𝛾 ′ 𝑍 𝑖 )  +    {{11 −− 

𝜑𝜑((𝛾𝛾′′𝑍𝑍𝑖𝑖))}}𝑔𝑔((0𝑦|𝑖𝑋|𝑋𝑖)𝑖) 𝑖𝑓𝑖𝑓 𝑦𝑦𝑖𝑖 => 00 

When the probability 𝜑𝑖 depends on the characteristics of observation 𝑖, 𝜑𝑖 is written as a 

function of 𝛾′ , where 𝑍𝑖 is the vector of zero-inflated covariates and 𝛾′ is the vector of zero-

inflated coefficients to be estimated. The mean and variance of the zero-inflated negative 

binomial model are calculated by the equations below. 

(𝑦𝑖|𝑋𝑖, 𝑍𝑖) = 𝜇(1 − 𝜑𝑖) 

𝑉(𝑦𝑖|𝑋𝑖, 𝑍𝑖) = 𝜇𝑖(1 − 𝜑𝑖)(1 + 𝜇𝑖(𝜑𝑖 + 𝛼)) 
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5.3 Measures of Goodness of Fit 

In order to verify and compare between regressions, basic measures of goodness of fit 

are introduced in this section, but the results analyses may include more ways to judgt than 

described in this section. 

5.3.1 Likelihood Ratio Test 

The likelihood ratio test is a statistical model that aims to compare the goodness of fit of 

two nested models, and one of two models is the special case of the other (Anisimova, 2006). In 

this project, the likelihood ratio test was used to compare the performance of the Poisson 

regression model and negative binomial model. The test makes two hypotheses, a null 

hypothesis and an alternative hypothesis, and the null hypothesis would be rejected or be 

accepted by the test results based on the likelihood ratio function, which is how many times 

more likely the data fit one model better than the other model. The test statistic is given by the 

equation: 

where 𝐿(𝜃|𝑥) is the likelihood function that is calculated by the probability density function of 

the model. The likelihood ratio statistic follows chi-square distribution, then, p-value can be 

computed according to each significance levels. 

5.3.2 Vuong Non-Nested Hypothesis Test 

The Vuong non-nested test is based on a comparison of the predicted probabilities of two 

models that do not nest, for examples the comparison of zero-inflated count models with their 

non-zero-inflated analogs (e.g., zero-inflated negative binomial model versus ordinary negative 

binomial model); in this project, it would be used for comparing the performance of negative 

binomial regression model and the zero-inflated negative binomial regression model. It is a 

likelihood ratio-based test for model selection using the Kullback-Leibler information criterion 

(Vuong, 1989), and the test statistic is given by the equations below. 

𝐿(𝛽𝑀𝐿,1, 𝛽𝑀𝐿,2) 

𝑍 = 

√𝑁𝜔𝑁 

where the numerator of the statistic is the difference between the maximum likelihoods of the 

two models, which is calculated as 
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𝐿(𝛽𝑀𝐿,1, 𝛽𝑀𝐿,2) = 𝐿𝑁 − 𝐿2𝑁 − 1 − 𝐾2 

𝑙𝑜𝑔𝑁 𝐾 
1 

2 

where 𝐾1 and 𝐾2 are the numbers of parameters in model 1 and model 2, respectively. The term 

in the denominator of the expression for Z is defined by setting 𝜔𝑁2 equal to either the mean of 

the squares of the pointwise log-likelihood ratios 𝑙𝑖, or to the sample variance of these values, 

where 

𝑓1(𝑦𝑖|𝑥𝑖, 𝛽𝑀𝐿,1) 

𝑙𝑖 = 𝑙𝑜𝑔 
𝑓2(𝑦𝑖|𝑥𝑖, 𝛽𝑀𝐿,2) 

The test statistic asymptotically follows standard normal distribution, then, the p-value 

can be computed according to each significance levels. 
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CHAPTER 6 RESULTS AND DISCUSSION  

The model regressions were applied to Portland and Seattle separately because no 

crowdsourcing was valid in Seattle. Fortunately, ODOT purchased 2014 STRAVA data for 

Oregon, and engineers were able to apply the method to this crowdsourced data set. In this 

chapter, regression results are analyzed for both cities. 

6.1 Results and Analyses for Portland 

In this section, the Poisson regression model and negative binomial model are applied to 

the Portland data set. The modeling processes were completed in the R® program. Results are 

included for both models and are interpreted separately. Also included is a comparison of the 

two models and suggestions for the better model for SPF. 

6.1.1 Poisson Regression Model 

PRM was conducted and the results are shown in Table 6-1, Poisson regression results 

(log link). The second column shows the estimated coefficient for each variable, and it indicates 

the level of a variable’s influence on the dependent variable (crash number). For example, the 

estimated coefficient of AADT means that for each one-unit increase in AADT, the expected log 

count of crashes increases by 5.245e-05 (e-05 is equal to 0.00005), holding other variables 

constant. Note that it is “log count” instead of a “count” because there is a log link function 

between the dependent and independent variables in regression. (More details are shown in the 

Methodology section.) Another important component in this table is the p value and the 

significance level. The number 5.245e-05 seems small, and it is because 1) an increase in AADT 

by one unit does not have a lot of influence on crashes, but AADT normally changes on a larger 

scale; 2) the bicycle crash number has a smaller order of magnitude than motorized vehicle 

crashes. The significance level is shown based on p-value, which indicates whether the variable 

is significant. Three stars, two stars, one star, and no star represent “convincing evidence,” 

“convincing evidence,” “moderate evidence,” and “week evidence,” respectively. For instance, 

the p-value for AADT is 4.82e-05 and the corresponding significance level is ***, which means 

there is convincing evidence that the AADT has influence on the number of crashes. 

Table 6-1 Poisson regression results (log link) 

Variable Estimated coefficient SE z Pr(>|z|) Significance level 

Intercept -1.571 4.237e-01 -3.708 0.000209 *** 

AADT 5.239e-05 1.289e-05 4.064 4.82e-05 *** 

STRAVA 8.877e-05 3.549e-05 2.501 0.012371 * 

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Table 6-2 and table 6-3 show the 95 percent interval of each variable with log function 

and without, respectively. In table 6-2, using AADT as an example, we can conclude with 95 

percent confidence that the expected log count of crashes increases between 2.702283e-05 to 

7.778322e-05 with one-unit increases in AADT. Again, the numbers are small because the unit 

is changing by one AADT. With a change of 1,000 or 10,000 AADT, the number would be 

correspondingly larger. When we transform the log count back to a normal count, the 

interpretation is that for every unit increase in AADT, the crash occurrence increases 1.0000525 

times than before, holding other variables constant, and with a 95 percent confidence, expected 

crash counts will increase between 2.702283e-05 to 7.778322e-05 times with a one-unit increase 

in AADT. 

Table 6-2, 95 percent interval results (log link) 

97.5% 

Variable Estimation 2.5% 

-7.873487e-01 -

Intercept -1.571 2.454689 

7.778322e-05 

AADT 5.239e-05 2.702283e-05 

1.544616e-04 

STRAVA 8.877e-05 1.324681 

Table 6-3, 95 percent interval results 

Variable Estimation 2.5% 97.5% 

Intercept 0.2077537 0.08588987 
0.4550497 

AADT 

STRAVA 

1.0000524 

1.0000888 

1.00002702 

1.00001325 

1.0000778 

1.0001545 

6.1.2 Negative Binomial Regression Model 

NBRM was conducted, and the results are shown in table 6-4. The second column shows 

the estimated coefficient for each variable, and it indicates the levels of a variable’s influence on 

the dependent variable (crash number). For example, the estimated coefficient of STRAVA 

means that for each one-unit increase in STRAVA, the expected log count of crashes will 

increase by 8.942e-05 (e-05 is equal to 0.00005), holding other variables constant. The number 

8.942e-05 seems small, and it is because 1) increasing STRAVA by one unit does not have a lot 

of influence on crashes, but STRAVA typically is on a large scale; 2) there are many fewer 
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bicycle crashes than motorized vehicle crashes; 3) STRAVA only represents a proportion of all 

bicycle counts. The p-value for STRAVA is 0.012836 and the corresponding significance level 

is *, which means we have only moderate evidence that the STRAVA count has influence on the 

number of crashes. 

Table 6-4, Negative binomial regression results (log link) 

Variable Estimation SE z Pr(>|z|) 

Significance 

level 

Intercept -1.575 4.281e-01 -3.679 0.000234 *** 

AADT 5.245e-05 1.311e-05 4.000 6.34e-05 *** 

STRAVA 8.942e-05 3.594e-05 2.488 0.012836 * 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Table 6-5 and table 6-6 show the 95 percent interval for each variable for NBRM. In 

table 6-5, using STRAVA as an example, we can conclude with 95 percent confidence that the 

expected log count of crashes will increase between 1.278175e-05 to 1.566332e-04 with a one-

unit increase in STRAVA count. Again, the numbers are small because there is only a one-unit 

change in STRAVA. If the change were 1,000 or 10,000 STRAVA, the number would be 

correspondingly larger. When we transform the log count back to a normal count, the 

interpretation is that for every unit increase in STRAVA, the crash occurrence will increase 

1.0000525 times than before, holding other variables constant, and with 95 percent confidence, 

expected crash counts will increase between 1.00001278 to 1.0001566 times with a one-unit 

increase in STRAVA count. 

Table 6-5, Negative binomial regression results 95 percent interval (log link) 

Variable Estimation 2.5% 97.5% 

Intercept -1.575 -2.467539 -7.822395e-01 

AADT 5.245e-05 2.670806e-05 7.834061e-05 

STRAVA 8.942e-05 1.278175e-05 1.566332e-04 

Table 6-6, Negative binomial regression results 95 percent interval. 

97.5% 

2.5%Variable Estimation 
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0.4573805 

Intercept 0.2070074 0.08479324 

1.0000783 

AADT 1.0000525 1.00002671 

1.0001566 

STRAVA 1.0000894 1.00001278 

6.1.3 Comparison of NBRM and PRM 

The information of residual deviances is used to test the goodness of fit for both models 

to test the overall model. Table 6-7 shows the deviance, degree of freedom, and significant value 

(P) for both. The residual deviance represents the difference between the deviance of the current 

model and the maximum deviance of the ideal model in which the predicted value is totally the 

same as the observed value. So when the residual is small, the goodness of fit test will not be 

significant, and the p value will be larger than 0.05. The p values for both models are large, 

which indicates that both models fit the data well. Comparing between the two models, NBRM 

has smaller residual deviance and better goodness of fit, even if the difference is not very 

obvious, so it performs better than PRM.  

Table 6-7, Goodness of fit test by deviance 

model 

Residual 

Deviance 

Degree of 

freedom P 

NBRM 52.15687 47 0.280344 

PRM 53.19661 47 0.2478945 

As mentioned in the methodology and literature review chapter, the NBRM has an 

assumption that the variance is not equal to the mean. Table 6-8 shows the dispersion type of the 

two models. Residual deviance larger than degree of freedom indicates over-dispersion. In the 

two model, the results show so, but only slightly. In addition, the two time difference of 

likelihoods show the dispersion as well. The two time difference of likelihoods is a little larger 

than 0, indicating slight over-dispersion. The slight over-dispersion is consistent with previous 

results that the NBRM fits the data set only slightly better than PRM. 

Table 6-8, Check dispersion 

Residual Degree of Two times 

model deviance Freedom likelihoods difference 

75 



  

     
 

      

  

     

   

  

  

   

   

  

 

  

  

  

 

 

  

   

 

  

       

     

     

     

  

    

   

     

  

NBRM 52.157 47 52.15687 
0.01133067 

PRM 53.197 47 53.19661 

6.2 Results and Analyses for Seattle 

This section discusses the analyses of the modeling results for tje Seattle data. Similar to 

the previous analysis of the Portland data, this section also compares different models and uses 

the model with the best fitness as the final model. 

6.2.1 Poisson Model 

Table 6-9 shows the estimation results of the Poisson regression model. According to the 

modeling results, both AADB and AADT have impacts on the number of bicycle crashes at 

intersections. The sign of estimated coefficient of variable for AADB is positive, which 

indicates the relationship between AADB and bicycle crashes is positive. The value of 

coefficient means that the number of bicycle crashes at intersections in the study area will 

increase 0.00061 when AADB increases by one unit. The hypothesis test indicates that the 

impact of AADB on the number of bicycle crashes is significant at the significance level of 0.05. 

The variable AADT has a negative effect on the response variable, and the hypothesis test 

reveals the impact is significant at the 0.1 significance level. The modeling results are consistent 

with the preliminary analysis of the relationship between AADB, AADT, and the number of 

bicycle crashes, which was discussed in data description.  

Table 6-9 Poisson regression results 

Variable Estimation Robust SE z Pr(>|z|) 

Intercept 1.040285 0.5005479 1.822 0.03768248 

AADB 0.000612304 0.000131466 2.437 3.2003E-06 

AADT -3.54547E-05 1.80875E-05 -1.479 0.04997486 

Table 6-10 provides the value of the 95 percent confidence interval of estimated 

coefficients. The results means that 95 percent of the time, the true amount of the impact of the 

independent variables on the response variable would be between 2.5 percent and 97.5 percent. 
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Table 6-10 Poisson regression model estimation 95 percent confidence interval 

97.50% 

Variable Estimation 2.50% 

2.021359 

Intercept 1.040285 0.05921079 

0.00086998 

AADB 0.0006123 0.00035463 

-3.24E-09 -

AADT -3.545E-05 7.091E-05 

6.2.2 Negative Binomial Model 

As mentioned previously, bicycle crash count data have the feature of over-dispersion. 

Thus, since the Poisson regression model assumes that the response variable is distributed 

Poisson, and the mean is the same as the variance, the over-dispersion could not be handled 

perfectly by the Poisson regression model. However, the negative binomial regression model is 

able to handle the over-dispersed data sample by introducing a stochastic component to the 

loglinear Poisson mean function relationship. In order to check the assumption of the over-

dispersed bicycle crash data sample, the scatter plot of estimated mean value versus the 

estimated variance is provided in figure 6-1. According to the figure, most data points are 

located under the line, which means the data sample is over-dispersed. If the mean and the 

variance of the distribution that the sample data follow are the same, then the data points should 

be located along the line. We also calculated the sum of square of residuals of Poisson model 

divided by the degree of freedom of residuals, which should be no more than 1 if the data are not 

over-dispersed. The value of 2.39 indicates that the data are over-dispersed. Therefore, the 

negative binomial model should be more suitable for this kind of data.  

Figure 6-1 Dispersion of data 
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Table 6-11 provides the modeling results for the negative binomial regression model. 

The modeling results who that both AADT and AADB have an impact on the response variable. 

The signs of estimated coefficients are consistent with the Poisson regression model results, 

positive impact for AADB and negative impact for AADT. The significant level for AADT and 

AADB, respectively, are 0.05 and 0.1. Table 6-12 provides the 95 percent confidence interval 

for the estimated coefficients. The results mean that 95 percent of the time, the true amount of 

impacts for the independent variables on the response variable would be between 2.5 percent 

and 97.5 percent. 

Table 6-11 Negative binominal regression results 

Variable Estimation Standard Deviation z Pr(>|z|) 

Intercept 1.18E+00 7.70E-01 1.532 0.1256 

AADB 6.90E-04 3.88E-04 1.777 0.0756 

AADT -4.30E-05 3.18E-05 -1.354 0.1759 

Table 6-12 Negative binomial regression model estimation 95 percent confidence interval 

Estimation 

1.18E+00 

Variable 2.50% 97.50% 

Intercept -2.08E-01 3.06E+00 

AADB 6.90E-04 -6.71E-05 1.61E-03 

AADT -4.30E-05 -1.27E-04 2.03E-06 

6.2.3 Zero-Inflated Negative Binomial Model 

Since excess zeros occurred in the bicycle crash count data set, the zero-inflated negative 

binomial model was introduced to deal with the excess zeros. The results of the performance 

comparison of the zero-inflated negative binomial model and normal negative binomial model 

are provided in the section of measures of goodness of fit by using the Vuong test. 

Table 6-13 shows the results of the negative binomial regression coefficients for each of 

the variables, along with standard errors, z-scores, and p-values for the coefficients. The 

estimates have the same signs, with the signs of both the Poisson model and normal negative 

binomial model. The impacts on the response variable for AADT and AADB are at significance 

level of, respectively, 0.1 and 0.05.  

Table 6-13 Zero-inflated negative binominal - count model coefficients 
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Variable Estimation Std. Error z Pr(>|z|) 

Intercept 1.18E+00 4.32E-01 2.734 0.00626 

AADT -4.30E-05 1.05E+00 0.786 0.43202 

AADB 6.90E-04 4.61E-04 1.497 0.13429 

Table 6-14 Zero-inflated negative binominal - count model doefficients 95 percent CL 

97.50% 

Variable Estimation 2.50% 

2.03E+00 

Intercept 1.18E+00 3.34E-01 

2.03E-06 

AADT -4.30E-05 -1.27E-04 

1.59E-03 

AADB 6.90E-04 -2.13E-04 

Table 6-15 provides the results that correspond to the inflation model, which includes 

logit coefficients for predicting excess zeros along with their standard errors, z-scores, and p-

values. Table 6-16 shows the 95 percent confidence interval of estimated coefficients. 

Table 6-15 Zero-inflated negative binominal - zero-inflation model coefficients 

Variable Estimation Std. Error z Pr(>|z|) 

Intercept -1.77E+01 1.41E+03 -0.013 0.99 

AADB -4.19E-04 3.00E+00 0 1 

Table 6-16 Zero-inflated negative binominal - zero-inflation model coefficients 95 percent CL 

Variable Estimation LL UL 

Intercept -1.77E+01 -2.77E+03 2.74E+03 

AADB -4.19E-04 -5.87E+00 5.87E+00 
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6.2.4 Measures of Goodness of Fit 

As mentioned previously, the likelihood ratio test aims to compare the performance of 

nested models, such as the Poisson model and negative binomial model. Table 6-17 shows the 

results of the comparison of two models. According to the modeling results, even the 

significance level of the test result is not very high, but the negative binomial model handled the 

over-dispersion feature of the sample data better than the Poisson regression model at a 0.1 

significance level, 

Table 6-17 Likelihood ratio test results 

Model 

Degree of 

Freedom 

Log-

likelihood 

Degree of 

Freedom Chisq Pr(>Chisq) 

1 3 -19.933 

2 4 -18.801 1 2.2624 0.1325 

As described previously, the Vuong non-nested hypothesis test is meant to compare the 

performance of non-nested models, such as the zero-inflated negative binomial model and the 

normal negative binomial model. Table 6-18 shows the test results, where model 2 is the normal 

negative binomial model and model 1 is the zero-inflated negative binomial model. According 

to the results, model 2 performed better than model 1 at a significance level for both AIC and 

BIC criteria. The potential reason is that the zero-inflated negative binomial model assumes that 

a response variable has two different generation processes, but the assumption might be violated 

in the bicycle crash count data set, and another potential reason is that the sample size was too 

small to get the true relationship between the independent variables and response variables. 

Table 6-18 Vuong non-nested hypothesis test-statistic 

Parameter Vuong z-statistic H_A p-value 

Raw -3.93E-01 model2 > model1 0.34707 

AIC-corrected -3.59E+07 model2 > model1 < 2e-16 

BIC-corrected 
-4.46E+07 model2 > model1 < 2e-16 
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CHAPTER 7 CONCLUSION AND RECOMMENDATION 

The chapter provides recommendation for engineers and city planners for building an 

SPF with crowdsourced data. The conclusions and recommendations include suggestions for 

enhancement of GIS tools, procedures for building an SPF using crowdsourced data, data 

collection to build an SPF, and SPF modeling. 

7.1 Enhancement of GIS Tools 

This project improved the usability of a GIS tool that had been created during a previous 

PacTrans project. Engineers and planners can use this tool to estimate bicycle exposure when 

conducting safety analyses. This achievement makes the tool more user-friendly and decreases 

computation time. The new tool only needs 2 hours for the bicycle network of Seattle, which 

previously required 22 hours in the original tool. Thus, calibration can be done within a single 

work day. The improvements documented in this report can provide guidance for practitioners 

who will use the tool and provide helpful information for future researchers who might continue 

to advance the underlying methods. 

7.2 Establishing an SPF by Using Crowdsourced Data 

One of the most important achievements was to build a repeatable process for building 

an SPF using crowdsourced data. This project used STRAVA counts as an example of 

crowdsourced data to create a procedure for establishing a bicycle SPF. Other DOTs and 

transportation agencies can follow the process of building an SPF for different jurisdictions. The 

requirements for building an SPF for different scale jurisdictions and different purposes for the 

SPF were summarized and proved by the Portland study case. 

7.3 Data Collection for Building an SPF 

This project used crowdsourced data – STRAVA bicycle counts— to build an SPF for 

Portland, Oregon. Even though the STRAVA data were not available in Seattle and engineers 

had to use count data to build an SPF for Seattle, this limitation provided engineers with a 

chance to compare the processes of building an SPF based on crowdsourced data and non-

crowdsourced data.  

The most important part of using crowdsourced data is to verify the representation of 

them. Representation is a very basic foundation to making decisions. In addition, even though it 

may be relatively easier for engineers to get crowdsourced data that include massive amounts of 

information and that cover a much larger spatial area, we recommend that engineers clean up the 

data set as early as possible, since a lot of information from the crowdsourced data may not be 

useful for achieving project goals and could distract attention and even hide more importation 

information Engineers should also focus on the errors in crowdsourced data. For instance, the 
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STRAVA data had some routes that were double- or triple-counted because of GPS assignment 

errors. 

7.4 Modeling for SPF 

Several different regressions were applied in this project to build an SPF, including 

negative binomial regression model, Poisson regression model, and zero-inflated negative 

binomial model. Different tests were conducted to verify and compare those models. The results 

showed that the negative binomial regression model and Poisson regression model fit better to 

the Portland data set than the Seattle data set. Engineers suggest that using STRAVA data to 

build an SPF for Pacific Norwest cities is justified and is more efficient than using traditional 

count data. The model results regarding significance were similar to those of  previous studies 

that used traditional count data, which indicates that jurisdictions can use crowdsourced data 

rather than labor-consuming traditional count data, but with attention to representation of the 

population. 

7.5 Limitations and Future Work 

Because of data availability and time limitations, this project faced several limitations 

described below, and work to address those limitations also is listed: 

1. Due to AADT data availability, even though the overall data set could represent the 

population, part of the data set was not collected randomly. 

2. STRAVA data can represent a proportion of total bicycle counts, but the percentage 

of representation and demographic representation have not been proven. 

3. Engineers can use a larger data set to build an SPF and may find other significant 

results. 

4. STRAVA data are not an open source data, and steps to cooperation and investment 

are necessary. Other researchers can try other open source crowdsourced data to 

build an SPF. 
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